000 03233nab|a22004217a|4500
001 68822
003 MX-TxCIM
005 20250605094237.0
008 20255s2025|||||-us||p|op||||00||0|eng|dd
022 _a2160-1836
024 8 _ahttps://doi.org/10.1093/g3journal/jkaf087
040 _aMX-TxCIM
041 _aeng
100 1 _aCrossa, J.
_gGenetic Resources Program
_8CCJL01
_959
245 1 0 _aEvaluating the effectiveness of selection indices and their genomic prediction using environmental and historical rice data
260 _aBethesda, MD (United States of America) :
_bOxford University Press,
_c2025.
500 _aPeer review
500 _aOpen Access
520 _aImproving genetic gains in rice breeding programs requires accurate prediction methods for selection indices. Effective use of genomic prediction could significantly accelerate breeding cycles. The Smith index method (SIM), the eigenvalue selection index method (ESIM), and the desired gain index (DG) are linear combinations of trait phenotypic values y (I=b ' y), and while the SIM and ESIM predict the net genetics merit (H=w ' c), where w is the vector of economic weights and c is the unobserved genotypic values, the DG predicts the mean of genotypic values. To enhance genomic prediction accuracy, mixed linear and Bayesian models incorporate molecular markers to estimate genomic effects, resulting in genomic estimated breeding values. This study evaluated (1) the efficiency of the SIM, ESIM, and DG through their main parameters and (2) the predictive accuracy of 5 genomic prediction models utilizing historical rice (Oryza sativa) data from 2018 to 2021 to predict selection indices for 2022. The correlation between observed and predicted indices assessed the effectiveness of each genomic model. Models incorporating year-specific and environmental covariates significantly improved predictive performance. These findings underscore the importance of environmental covariates and indicate that the SIM is the most effective method for maximizing key index parameters, while the ESIM provides the best predictive accuracy for indices. Consequently, rice breeders are encouraged to use these indices to enhance genetic gains per selection cycle.
546 _aText in English
591 _aCeron Rojas, J.J. : Not in IRS staff list but CIMMYT Affiliation
591 _aMontesinos-Lopez, O.A. : No CIMMYT Affiliation
597 _dLouisiana State University Agricultural Center (LSU AgCenter)
650 7 _aGenomics
_2AGROVOC
_91132
650 7 _aBreeding
_2AGROVOC
_91029
650 7 _aForecasting
_2AGROVOC
_92701
650 7 _aRice
_91243
_2AGROVOC
700 1 _aCeron Rojas, J.J.
_91932
700 1 _aMontesinos-Lopez, A.
_92702
700 1 _aMontesinos-Lopez, O.A.
_gGenetic Resources Program
_8I1706800
_92700
700 1 _aPunzalan, J.
_939082
700 1 _aFamoso, A.
_939083
700 1 _aFritsche-Neto, R.
_96507
773 0 _tG3: Genes, Genomes, Genetics
_dBethesda, MD (United States of America) : Oxford University Press, 2025.
_x2160-1836
_gv. 15, no. 6, art. jkaf087
_w 56922
856 4 _yOpen Access through DSpace
_uhttps://hdl.handle.net/10883/35699
942 _cJA
_n0
_2ddc
999 _c68822
_d68814