000 02828nab|a22004697a|4500
001 68771
003 MX-TxCIM
005 20251217110912.0
008 20254s2025|||||sz ||p|op||||00||0|eng|dd
022 _a1422-0067 (Online)
024 8 _ahttps://doi.org/10.3390/ijms26083620
040 _aMX-TxCIM
041 _aeng
100 1 _aMontesinos-Lopez, O.A.
_gGenetic Resources Program
_8I1706800
_92700
245 1 0 _aGBLUP outperforms quantile mapping and outlier detection for enhanced genomic prediction
260 _aSwitzerland :
_bMDPI,
_c2025.
500 _aPeer review
500 _aOpen Access
520 _aGenomic selection (GS) accelerates plant breeding by predicting complex traits using genomic data. This study compares genomic best linear unbiased prediction (GBLUP), quantile mapping (QM)-an adjustment to GBLUP predictions-and four outlier detection methods. Using 14 real datasets, predictive accuracy was evaluated with Pearson's correlation (COR) and normalized root mean square error (NRMSE). GBLUP consistently outperformed all other methods, achieving an average COR of 0.65 and an NRMSE reduction of up to 10% compared to alternative approaches. The proportion of detected outliers was low (<7%), and their removal had minimal impact on GBLUP's predictive performance. QM provided slight improvements in datasets with skewed distributions but showed no significant advantage in well-distributed data. These findings confirm GBLUP's robustness and reliability, suggesting limited utility for QM when data deviations are minimal.
546 _aText in English
591 _aMontesinos-Lopez, O.A. : No CIMMYT Affiliation
597 _dSLU Grogrund
_fBreeding for Tomorrow
_uhttps://hdl.handle.net/10568/175487
650 7 _aMarker-assisted selection
_2AGROVOC
_910737
650 7 _aPlant breeding
_2AGROVOC
_91203
650 7 _aForecasting
_2AGROVOC
_92701
650 7 _aWheat
_2AGROVOC
_91310
700 1 _aCrossa, J.
_gGenetic Resources Program
_8CCJL01
_959
700 1 _8001713327
_aVitale, P.
_gGlobal Wheat Program
_gGenetic Resources Program
_931497
700 1 _aGerard, G.S.
_81713398
_gGlobal Wheat Program
_911490
700 1 _aCrespo-Herrera, L.A.
_gGlobal Wheat Program
_8I1706538
_92608
700 1 _aDreisigacker, S.
_gGlobal Wheat Program
_8INT2692
_9851
700 1 _aSaint Pierre, C.
_gGlobal Wheat Program
_8INT2731
_9855
700 1 _aPosadas, L.G.
_938790
700 1 _aAgbona, A.
_916134
700 1 _aBuenrostro-Mariscal, R.
_922062
700 1 _aMontesinos-Lopez, A.
_92702
700 1 _aChawade, A.
_97735
773 0 _tInternational Journal of Molecular Sciences
_gv. 26, no. 8, art. 3620
_dSwitzerland : MDPI, 2025.
_x1661-6596
_w57216
856 4 _yOpen Access through DSpace
_uhttps://hdl.handle.net/10883/35640
942 _cJA
_n0
_2ddc
999 _c68771
_d68763