000 03497nab|a22004337a|4500
001 68534
003 MX-TxCIM
005 20250123132617.0
008 250123s2019 ne ||||| |||| 00| 0 eng d
022 _a2215-0161 (Online)
024 8 _ahttps://doi.org/10.1016/j.mex.2023.102467
040 _aMX-TxCIM
041 _aeng
100 1 _aMponela, P.
_8001714263
_gSustainable Agrifood Systems
_921640
245 1 0 _aMASSAI :
_bMulti-agent system for simulating sustainable agricultural intensification of smallholder farms in Africa
260 _aNetherlands :
_bElsevier B.V.,
_c2023.
500 _aPeer review
500 _aOpen Access
520 _aThe research and development needed to achieve sustainability of African smallholder agricultural and natural systems has led to a wide array of theoretical frameworks for conceptualising socioecological processes and functions. However, there are few analytical tools for spatio-temporal empirical approaches to implement use cases, which is a prerequisite to understand the performance of smallholder farms in the real world. This study builds a multi-agent system (MAS) to operationalise the Sustainable Agricultural Intensification (SAI) theoretical framework (MASSAI). This is an essential tool for spatio-temporal simulation of farm productivity to evaluate sustainability trends into the future at fine scale of a managed plot. MASSAI evaluates dynamic nutrient transfer using smallholder nutrient monitoring functions which have been calibrated with parameters from Malawi and the region. It integrates two modules: the Environmental (EM) and Behavioural (BM) ones. •The EM assess dynamic natural nutrient inputs (sedimentation and atmospheric deposition) and outputs (leaching, erosion and gaseous loses) as a product of bioclimatic factors and land use activities. •An integrated BM assess the impact of farmer decisions which influence farm-level inputs (fertilizer, manure, biological N fixation) and outputs (crop yields and associated grain). •A use case of input subsidies, common in Africa, markedly influence fertilizer access and the impact of different policy scenarios on decision-making, crop productivity, and nutrient balance are simulated. This is of use for empirical analysis smallholder's sustainability trajectories given the pro-poor development policy support.
546 _aText in English
591 _aMponela, P. : No CIMMYT Affiliation
591 _aSnapp, S.S. : No CIMMYT Affiliation
597 _aClimate adaptation & mitigation
_aNutrition, health & food security
_aPoverty reduction, livelihoods & jobs
_bMixed Farming Systems
_cResilient Agrifood Systems
_dCGIAR Trust Fund
_dDeutscher Akademischer Austauschdienst (DAAD)
_uhttps://hdl.handle.net/10568/132879
650 7 _aFarm Inputs
_2AGROVOC
_98734
650 7 _aNutrient balance
_2AGROVOC
_97132
650 7 _aFarming systems
_2AGROVOC
_91109
650 7 _aModelling
_2AGROVOC
_911710
650 7 _aPolicies
_2AGROVOC
_94809
650 7 _aSoil quality
_2AGROVOC
_91270
650 7 _aSustainability
_2AGROVOC
_91283
651 7 _aAfrica
_2AGROVOC
_91316
700 0 _aQuang Bao Le
_938017
700 1 _aSnapp, S.S.
_8001712907
_gSustainable Agrifood Systems
_97149
700 1 _aVillamor, G.B.
_921642
700 1 _aTamene, L.
_920122
700 1 _aBorgemeister, C.
_93762
773 0 _tFrontiers in Ecology and the Environment
_gv. 21, no. 7, p. 341-349
_dUnited States of America : Wiley-Blackwell, 2023.
_x1540-9295
942 _cJA
_n0
_2ddc
999 _c68534
_d68526