000 03505nab|a22006257a|4500
001 68413
003 MX-TxCIM
005 20251219160152.0
008 202411s2025||||-uk|||p|op||||00||0|eng|d
022 _a0022-0957
022 _a1460-2431 (Online)
024 8 _ahttps://doi.org/10.1093/jxb/erae449
040 _aMX-TxCIM
041 _aeng
100 0 _aOorbessy Gaju
_98909
245 1 0 _aAccounting for the impact of genotype and environment on variation in leaf respiration of wheat in Mexico and Australia
260 _aUnited Kingdom :
_bOxford University Press,
_c2025.
500 _aPeer review
500 _aOpen access
520 _aAn approach to improving radiation use efficiency (RUE) in wheat is to screen for variability in rates of leaf respiration in darkness (R dark). We used a high-throughput system to quantify variation in R dark among a diverse range of spring wheat genotypes (301 lines) grown in two countries (Mexico and Australia) and two seasons (2017 and 2018), and in doing so quantify the relative importance of genotype (G) and environment (E) in influencing variations in leaf R dark. Through careful design, residual (unexplained) variation represented <10% of the total observed. Up to a third of the variation in R dark (and related traits) was under genetic control. This suggests opportunities for breeders to use R dark as a novel selection tool. In addition, E accounted for more than half of the total variation in area-based rates of R dark. Here, the day of measurement was crucial, suggesting that day-to-day variations in the environment influence rates of R dark measured at a common temperature. Overall, this study provides new insights into the role G and E play in determining variation in rates of leaf R dark of one of the most important cereal crops, with implications for future improvements in carbon use efficiency and yield.
546 _aText in English
597 _dFoundation for Food & Agriculture Research (FFAR)
_dInternational Wheat Yield Partnership (IWYP)
_dAustralian Research Council (ARC)
_fBreeding for Tomorrow
_uhttps://hdl.handle.net/10568/179089
650 7 _aEnvironment
_2AGROVOC
_91098
650 7 _aGenotypes
_2AGROVOC
_91134
650 7 _aRespiration
_2AGROVOC
_910731
650 7 _aSelection
_2AGROVOC
_94749
650 7 _aWheat
_2AGROVOC
_91310
651 7 _aMexico
_2AGROVOC
_91318
651 7 _aAustralia
_2AGROVOC
_98101
700 1 _aBloomfield, K.J.
_937923
700 1 _aNegrini, A.C.A.
_98914
700 1 _aBowerman, A.F.
_929349
700 1 _aCullerne, D.
_937924
700 1 _aPosch, B.C.
_98912
700 1 _aBryant, C.J.
_98913
700 0 _aYuzhen Fan
_937925
700 1 _aSpence, M.
_937926
700 1 _aStone, B.
_937927
700 1 _aGilliham, M.
_925149
700 1 _aFurbank, R.T.
_98940
700 1 _aMolero, G.
_gFormerly Global Wheat Program
_8INT3193
_9899
700 1 _aPogson, B.J.
_98938
700 1 _aMathews, K.
_93392
700 1 _aMillar, A.H.
_98939
700 1 _aPearson, A.L.
_937928
700 1 _aReynolds, M.P.
_gGlobal Wheat Program
_8INT1511
_9831
700 1 _aStroeher, E.
_937929
700 1 _aTaylor, N.L.
_919876
700 1 _aTurnbull, M.H.
_937930
700 1 _aAtkin, O.K.
_98941
773 0 _dUnited Kingdom : Oxford University Press, 2024.
_gv. 76, no. 4, p. 1099–1115
_tJournal of Experimental Botany
_wG444540
_x0022-0957
856 4 _yOpen Access through DSpace
_uhttps://hdl.handle.net/10883/35390
942 _cJA
_n0
_2ddc
999 _c68413
_d68405