000 02906nab|a22004217a|4500
001 68140
003 MX-TxCIM
005 20241220154346.0
008 202411s2024||||mx |||p|op||||00||0|eng|d
022 _a2160-1836 (Online)
024 8 _ahttps://doi.org/10.1093/g3journal/jkae246
040 _aMX-TxCIM
041 _aeng
100 1 _aMontesinos-Lopez, A.
_92702
245 1 0 _aRefining penalized ridge regression :
_ba novel method for optimizing the regularization parameter in genomic prediction
260 _aBethesda, MD (United States of America) :
_bOxford University Press,
_c2024.
500 _aPeer review
500 _aOpén Access
520 _aThe popularity of genomic selection as an efficient and cost-effective approach to estimate breeding values continues to increase, due in part to the significant saving in genotyping. Ridge regression is one ofthe most popular methods used for genomic prediction; however, its efficiency (in terms of prediction performance) depends on the appropriate tunning of the penalization parameter. In this paper we propose a novel, more efficient method to select the optimal penalization parameter for Ridge regression. We compared the proposed method with the conventional method to select the penalization parameter in 14 real data sets and we found that in 13 of these, the proposed method outperformed the conventional method and across data sets the gains in prediction accuracy in terms of Pearson's correlation was of 56.15%, with not-gains observed in terms of normalized mean square error. Finally, our results show evidence of the potential of the proposed method, and we encourage its adoption to improve the selection of candidate lines in the context of plant breeding.
546 _aText in English
591 _aMontesinos-Lopez, O.A. : No CIMMYT Affiliation
650 7 _aGenomics
_2AGROVOC
_91132
650 7 _aPlant breeding
_2AGROVOC
_91203
650 7 _aBreeding Value
_2AGROVOC
_98947
650 7 _aMarker-assisted selection
_2AGROVOC
_910737
650 7 _aBest linear unbiased predictor
_2AGROVOC
_926493
650 7 _aStatistical models
_2AGROVOC
_930393
700 1 _aMontesinos-Lopez, O.A.
_gGenetic Resources Program
_8I1706800
_92700
700 1 _aLecumberry, F.
_937614
700 1 _aFariello, M.I.
_937615
700 1 _aMontesinos-Lopez, J.C.
_94950
700 1 _aCrossa, J.
_gGenetic Resources Program
_8CCJL01
_959
773 0 _tG3: Genes, Genomes, Genetics
_dBethesda, MD (United States of America) : Oxford University Press, 2024.
_x2160-1836
_gv. 14, no. 12, art. jkae246
_w56922
856 4 _yOpen Access through DSpace
_uhttps://hdl.handle.net/10883/35128
942 _cJA
_n0
_2ddc
999 _c68140
_d68132