000 02822nab|a22004457a|4500
001 67958
003 MX-TxCIM
005 20241122154231.0
008 202410s2024||||ne |||p|op||||00||0|eng|d
022 _a0168-9525
022 _a1362-4555 (Online)
024 8 _ahttps://doi.org/10.1016/j.tig.2024.07.001
040 _aMX-TxCIM
041 _aeng
100 1 _aFarooq, M.A.
_914254
245 1 0 _aArtificial intelligence in plant breeding
260 _bNetherlands :
_cElsevier B.V.,
_a2024.
500 _aPeer review
500 _aOpen access
520 _aHarnessing cutting-edge technologies to enhance crop productivity is a pivotal goal in modern plant breeding. Artificial intelligence (AI) is renowned for its prowess in big data analysis and pattern recognition, and is revolutionizing numerous scientific domains including plant breeding. We explore the wider potential of AI tools in various facets of breeding, including data collection, unlocking genetic diversity within genebanks, and bridging the genotype–phenotype gap to facilitate crop breeding. This will enable the development of crop cultivars tailored to the projected future environments. Moreover, AI tools also hold promise for refining crop traits by improving the precision of gene-editing systems and predicting the potential effects of gene variants on plant phenotypes. Leveraging AI-enabled precision breeding can augment the efficiency of breeding programs and holds promise for optimizing cropping systems at the grassroots level. This entails identifying optimal inter-cropping and crop-rotation models to enhance agricultural sustainability and productivity in the field.
546 _aText in English
591 _aAwais Rasheed : No CIMMYT Affiliation
650 7 _aArtificial intelligence
_917800
_2AGROVOC
650 7 _aBig data
_931310
_2AGROVOC
650 7 _aGenetic gain
_92091
_2AGROVOC
650 7 _aPlant breeding
_91203
_2AGROVOC
700 0 _aShang Gao
_937239
700 1 _aHassan, M.A.
_97723
700 0 _aZhangping Huang
_937241
700 1 _aAwais Rasheed
_gGlobal Wheat Program
_8I1706474
_91938
700 1 _aHearne, S.
_gGenetic Resources Program
_8INT3287
_9912
700 1 _aPrasanna, B.M.
_gGlobal Maize Program
_8INT3057
_9887
700 0 _aXinhai Li
_94207
700 0 _aHuihui Li
_gGenetic Resources Program
_8CLIH01
_9764
773 0 _dNetherlands : Elsevier B.V., 2024.
_gv. 40, no. 10, p. 891-908
_tTrends in Genetics
_wG445736
_x0168-9525
856 4 _yOpen Access through DSpace
_uhttps://hdl.handle.net/10883/35038
942 _cJA
_n0
_2ddc
999 _c67958
_d67950