000 03627nab|a22006617a|4500
001 67885
003 MX-TxCIM
005 20241126113200.0
008 20248s2024||||mx |||p|op||||00||0|eng|d
022 _a0140-7791
022 _a1365-3040 (Online)
024 8 _ahttps://doi.org/10.1111/pce.15117
040 _aMX-TxCIM
041 _aeng
100 0 _aYangyang Liu
_933495
245 1 0 _aGenomic insights into the modifications of spike morphology traits during wheat breeding
260 _bJohn Wiley & Sons Ltd.,
_c2024.
_aOxford (United Kingdom) :
500 _aPeer review
500 _aEarly View
500 _aOpen Access
520 _aOver the past century, environmental changes have significantly impacted wheat spike morphology, crucial for adaptation and grain yield. However, the changes in wheat spike modifications during this period remain largely unknown. This study examines 16 spike morphology traits in 830 accessions released from 1900 to 2020. It finds that spike weight, grain number per spike (GN), and thousand kernel weight have significantly increased, while spike length has no significant change. The increase in fertile spikelets is due to fewer degenerated spikelets, resulting in a higher GN. Genome-wide association studies identified 49,994 significant SNPs, grouped into 293 genomic regions. The accumulation of favorable alleles in these genomic regions indicates the genetic basis for modification in spike morphology traits. Genetic network analysis of these genomic regions reveals the genetic basis for phenotypic correlations among spike morphology traits. The haplotypes of the identified genomic regions display obvious geographical differentiation in global accessions and environmental adaptation over the past 120 years. In summary, we reveal the genetic basis of adaptive evolution and the interactions of spike morphology, offering valuable resources for the genetic improvement of spike morphology to enhance environmental adaptation.
546 _aText in English
591 _aYuanfeng Hao : No CIMMYT Affiliation
650 7 _aEvolution
_2AGROVOC
_98815
650 7 _aGenetics
_2AGROVOC
_91130
650 7 _aGrain
_2AGROVOC
_91138
650 7 _aYields
_2AGROVOC
_91313
650 7 _aGenome-wide association studies
_2AGROVOC
_931443
650 7 _aWheat
_2AGROVOC
_91310
650 7 _aBreeding
_2AGROVOC
_91029
650 7 _aSpikes
_2AGROVOC
_913862
700 0 _aRui Yu
_917666
700 0 _aLiping Shen
_933494
700 0 _aMengjing Sun
_919597
700 0 _aYanchun Peng
_98338
700 0 _aQingdong Zeng
_910687
700 0 _aKuocheng Shen
_933496
700 0 _aXuchang Yu
_933504
700 0 _aHe Wu
_933497
700 0 _aBotao Ye
_933503
700 0 _aZiying Wang
_933505
700 0 _aZhiweng Sun
_936780
700 0 _aDanning Liu
_936781
700 0 _aXiaohui Sun
_936782
700 0 _aZhiliang Zhang
_936783
700 0 _aJiayu Dong
_936784
700 0 _aJing Dong
_936785
700 0 _aDejun Han
_911169
700 1 _aHe Zhonghu
_gGlobal Wheat Program
_8INT2411
_9838
700 1 _aYuanfeng Hao
_gGlobal Wheat Program
_8INT3329
_9919
700 0 _aJianhui Wu
_911166
700 0 _aZifeng Guo
_94193
773 0 _tPlant Cell and Environment
_dOxford (United Kingdom) : John Wiley & Sons Ltd., 2024.
_x0140-7791
_gv. 47, no. 12, p. 5470-5482
_wu444686
856 4 _yOpen Access through DSpace
_uhttps://hdl.handle.net/10883/34679
942 _cJA
_n0
_2ddc
999 _c67885
_d67877