000 03591nab|a22005417a|4500
001 65626
003 MX-TxCIM
005 20230901185454.0
008 20228s2022||||mx |||p|op||||00||0|eng|d
022 _a1664-8021 (Online)
024 8 _ahttps://doi.org/10.3389/fgene.2022.890133
040 _aMX-TxCIM
041 _aeng
100 1 _aJadhav, K.P.
_928858
245 1 0 _aGBS-based SNP map pinpoints the QTL associated with sorghum downy mildew resistance in maize (Zea mays L.)
260 _bFrontiers,
_c2022.
_aSwitzerland :
500 _aPeer review
500 _aOpen Access
520 _aSorghum downy mildew (SDM), caused by the biotrophic fungi Peronosclerospora sorghi, threatens maize production worldwide, including India. To identify quantitative trait loci (QTL) associated with resistance to SDM, we used a recombinant inbred line (RIL) population derived from a cross between resistant inbred line UMI936 (w) and susceptible inbred line UMI79. The RIL population was phenotyped for SDM resistance in three environments [E1-field (Coimbatore), E2-greenhouse (Coimbatore), and E3-field (Mandya)] and also utilized to construct the genetic linkage map by genotyping by sequencing (GBS) approach. The map comprises 1516 SNP markers in 10 linkage groups (LGs) with a total length of 6924.7 cM and an average marker distance of 4.57 cM. The QTL analysis with the phenotype and marker data detected nine QTL on chromosome 1, 2, 3, 5, 6, and 7 across three environments. Of these, QTL namely qDMR1.2, qDMR3.1, qDMR5.1, and qDMR6.1 were notable due to their high phenotypic variance. qDMR3.1 from chromosome 3 was detected in more than one environment (E1 and E2), explaining the 10.3% and 13.1% phenotypic variance. Three QTL, qDMR1.2, qDMR5.1, and qDMR6.1 from chromosomes 1, 5, and 6 were identified in either E1 or E3, explaining 15.2%–18% phenotypic variance. Moreover, genome mining on three QTL (qDMR3.1, qDMR5.1, and qDMR6.1) reveals the putative candidate genes related to SDM resistance. The information generated in this study will be helpful for map-based cloning and marker-assisted selection in maize breeding programs.
546 _aText in English
591 _aGajanan Saykhedkar : Not in IRS staff list but CIMMYT Affiliation
650 7 _aGenotyping
_2AGROVOC
_922057
650 7 _aMaize
_2AGROVOC
_91173
650 0 _aSingle nucleotide polymorphisms
_gAGROVOC
_910805
650 7 _aSorghum
_2AGROVOC
_92002
650 7 _aDowny mildews
_2AGROVOC
_928239
650 7 _aQuantitative Trait Loci
_2AGROVOC
_91853
700 1 _aGajanan Saykhedkar
_91468
700 1 _aTamilarasi, P.M.
_928859
700 1 _aDevasree, S.
_928860
700 1 _aRanjani, R.V.
_928861
700 1 _aChandran, S.
_919143
700 1 _aPukalenthy, B.
_919142
700 1 _aAdhimoolam, K.
_919145
700 1 _aArulselvi, S.
_928862
700 1 _aVijayagowri, E.
_928863
700 1 _aGanesan, K.N.
_915471
700 1 _aParanidharan, V.
_928864
700 1 _aNair, S.K.
_91434
_8INT3232
_gGlobal Maize Program
700 1 _aBABU, R.
_9875
700 1 _aRamalingam, J.
_928865
700 1 _aRaveendran, M.
_93880
700 1 _aSenthil, N.
_92384
773 0 _tFrontiers in Genetics
_gv. 13, art. 890133
_dSwitzerland : Frontiers, 2022.
_x1664-8021
_w58093
856 _yOpen Access through DSpace
_uhttps://hdl.handle.net/10883/22204
942 _cJA
_n0
_2ddc
999 _c65626
_d65618