000 | 03080nab|a22004577a|4500 | ||
---|---|---|---|
001 | 65499 | ||
003 | MX-TxCIM | ||
005 | 20240919021233.0 | ||
008 | 202212s2022||||mx |||p|op||||00||0|eng|d | ||
022 | _a2399-3642 (Online) | ||
024 | 8 | _ahttps://doi.org/10.1038/s42003-022-03680-7 | |
040 | _aMX-TxCIM | ||
041 | _aeng | ||
100 | 1 |
_aCollinson, S. _94177 |
|
245 | 1 | 0 | _aIncorporating male sterility increases hybrid maize yield in low input African farming systems |
260 |
_bSpringer Nature, _c2022. _aUnited Kingdom : |
||
500 | _aPeer review | ||
500 | _aOpen Access | ||
520 | _aMaize is a staple crop in sub-Saharan Africa, but yields remain sub-optimal. Improved breeding and seed systems are vital to increase productivity. We describe a hybrid seed production technology that will benefit seed companies and farmers. This technology improves efficiency and integrity of seed production by removing the need for detasseling. The resulting hybrids segregate 1:1 for pollen production, conserving resources for grain production and conferring a 200 kg ha−1 benefit across a range of yield levels. This represents a 10% increase for farmers operating at national average yield levels in sub-Saharan Africa. The yield benefit provided by fifty-percent non-pollen producing hybrids is the first example of a single gene technology in maize conferring a yield increase of this magnitude under low-input smallholder farmer conditions and across an array of hybrid backgrounds. Benefits to seed companies will provide incentives to improve smallholder farmer access to higher quality seed. Demonstrated farmer preference for these hybrids will help drive their adoption. | ||
546 | _aText in English | ||
591 | _aHamdziripi, E. : Not in IRS staff list but CIMMYT Affiliation | ||
591 | _aNdegwa, M.K. : Not in IRS staff list but CIMMYT Affiliation | ||
650 | 7 |
_2AGROVOC _91173 _aMaize |
|
650 | 7 |
_2AGROVOC _98629 _aField Experimentation |
|
650 | 7 |
_aPlant breeding _gAGROVOC _2 _91203 |
|
650 | 7 |
_2AGROVOC _95187 _aPollination |
|
650 | 7 |
_2AGROVOC _91109 _aFarming systems |
|
651 | 7 |
_2AGROVOC _91316 _aAfrica |
|
700 | 1 |
_aHamdziripi, E. _928399 |
|
700 | 1 |
_aDe Groote, H. _gFormerly Socioeconomics Program _gFormerly Sustainable Agrifood Systems _8INT2512 _9841 |
|
700 | 1 |
_aNdegwa, M.K. _8001713077 _gSustainable Agrifood Systems _91681 |
|
700 | 1 |
_aCairns, J.E. _8INT2948 _9879 _gGlobal Maize Program |
|
700 | 1 |
_aAlbertsen, M. _94176 |
|
700 | 1 |
_aLigeyo, D. _93396 |
|
700 | 1 |
_aMashingaidze, K. _96414 |
|
700 | 1 |
_aOlsen, M. _8INT3333 _9923 _gGlobal Maize Program |
|
773 | 0 |
_tCommunications Biology _gv. 5, no. 1, art. 729 _dUnited Kingdom : Springer Nature, 2022 _x2399-3642 |
|
856 |
_yOpen Access through DSpace _uhttps://hdl.handle.net/10883/22138 |
||
942 |
_cJA _n0 _2ddc |
||
999 |
_c65499 _d65491 |