000 02856nab|a22003977a|4500
001 64714
003 MX-TxCIM
005 20211217225832.0
008 211206s2020 xxu||||| |||| 00| 0 eng d
022 _a1932-6203 (Online)
024 8 _ahttps://doi.org/10.1371/journal.pone.0227363
040 _aMX-TxCIM
041 _aeng
100 1 _aVitkin, E.
_925975
245 1 0 _aDistributed flux balance analysis simulations of serial biomass fermentation by two organisms
260 _aSan Francisco, CA (USA) :
_bPublic Library of Science
_c2020.
500 _aPeer review
500 _aOpen Access
520 _aIntelligent biorefinery design that addresses both the composition of the biomass feedstock as well as fermentation microorganisms could benefit from dedicated tools for computational simulation and computer-assisted optimization. Here we present the BioLego Vn2.0 framework, based on Microsoft Azure Cloud, which supports large-scale simulations of biomass serial fermentation processes by two different organisms. BioLego enables the simultaneous analysis of multiple fermentation scenarios and the comparison of fermentation potential of multiple feedstock compositions. Thanks to the effective use of cloud computing it further allows resource intensive analysis and exploration of media and organism modifications. We use BioLego to obtain biological and validation results, including (1) exploratory search for the optimal utilization of corn biomasses—corn cobs, corn fiber and corn stover—in fermentation biorefineries; (2) analysis of the possible effects of changes in the composition of K. alvarezi biomass on the ethanol production yield in an anaerobic two-step process (S. cerevisiae followed by E. coli); (3) analysis of the impact, on the estimated ethanol production yield, of knocking out single organism reactions either in one or in both organisms in an anaerobic two-step fermentation process of Ulva sp. into ethanol (S. cerevisiae followed by E. coli); and (4) comparison of several experimentally measured ethanol fermentation rates with the predictions of BioLego.
546 _aText in English
650 7 _aFermentation
_2AGROVOC
_912531
650 7 _aEthanol
_2AGROVOC
_914591
650 7 _aSaccharomyces cerevisiae
_2AGROVOC
_925976
650 7 _aMaize
_2AGROVOC
_91173
650 7 _aGlucose
_2AGROVOC
_922525
650 7 _aBioenergy
_2AGROVOC
_92587
650 7 _aOxygen
_2AGROVOC
_912478
700 1 _aGillis, A.
_925977
700 1 _aPolikovsky, M.
_925978
700 1 _aBender, B.
_925979
700 1 _aGolberg, A.
_925980
700 1 _aYakhini, Z.
_925981
773 0 _tPLoS ONE
_gv. 15, no. 1, e0227363
_dSan Francisco, CA (USA) : Public Library of Science, 2020.
_x1932-6203
_wG94957
856 4 _yClick here to access online
_uhttps://doi.org/10.1371/journal.pone.0227363
942 _cJA
_n0
_2ddc
999 _c64714
_d64706