000 02075nab|a22003857a|4500
999 _c63538
_d63530
001 63538
003 MX-TxCIM
005 20240919021230.0
008 202102s2021||||xxu|||p|op||||00||0|eng|d
022 _a2160-1836 (Online)
024 8 _ahttps://doi.org/10.1093/g3journal/jkaa057
040 _aMX-TxCIM
041 _aeng
100 1 _aMontesinos-Lopez, O.A.
_8I1706800
_92700
_gGenetic Resources Program
245 1 2 _aA zero altered Poisson random forest model for genomic-enabled prediction
260 _aBethesda, MD (USA) :
_bGenetics Society of America,
_c2021.
500 _aPeer review
500 _aOpen Access
520 _aIn genomic selection choosing the statistical machine learning model is of paramount importance. In this paper, we present an application of a zero altered random forest model with two versions (ZAP_RF and ZAPC_RF) to deal with excess zeros in count response variables. The proposed model was compared with the conventional random forest (RF) model and with the conventional Generalized Poisson Ridge regression (GPR) using two real datasets, and we found that, in terms of prediction performance, the proposed zero inflated random forest model outperformed the conventional RF and GPR models.
546 _aText in English
650 7 _aMarker-assisted selection
_2AGROVOC
_910737
650 7 _aData
_2AGROVOC
_99002
650 7 _aPlant breeding
_gAGROVOC
_2
_91203
650 7 _aModels
_2AGROVOC
_94859
700 1 _aMontesinos-Lopez, A.
_92702
700 1 _aMosqueda-Gonzalez, B.A.
_919441
700 1 _aMontesinos-Lopez, J.C.
_94950
700 1 _aCrossa, J.
_gGenetic Resources Program
_8CCJL01
_959
700 1 _aLozano-Ramirez, N.
_917230
700 1 _aPawan Kumar Singh
_gGlobal Wheat Program
_8INT2868
_9868
700 1 _aValladares-Anguiano, F.A.
_919442
773 0 _tG3: Genes, Genomes, Genetics
_gv. 11, no. 2, art. jkaa057
_dBethesda, MD (USA) : Genetics Society of America, 2021.
_wu56922
_x2160-1836
856 4 _yOpen Access through DSpace
_uhttps://hdl.handle.net/10883/21342
942 _cJA
_n0
_2ddc