000 01807nab|a22003377a|4500
999 _c63325
_d63317
001 63325
003 MX-TxCIM
005 20211006073557.0
008 190911s2020||||xxu|||p|op||||00||0|eng|d
022 _a1559-128X
022 _a2155-3165 (Online)
024 8 _ahttps://doi.org/10.1364/AO.397844
040 _aMX-TxCIM
041 _aeng
100 0 _918444
_aQiong Zheng
245 1 0 _aUsing continous wavelet analysis for monitoring wheat yellow rust in different infestation stages based on unmanned aerial vehicle hyperspectral images
260 _aUSA :
_bOSA Publishing,
_c2020.
500 _aPeer review
520 _aYellow rust is the most extensive disease in wheat cultivation, seriously affecting crop quality and yield. This study proposes sensitive wavelet features (WFs) for wheat yellow rust monitoring based on unmanned aerial vehicle hyperspectral imagery of different infestation stages [26 days after inoculation (26 DAI) and 42 DAI]. Furthermore, we evaluated the monitoring ability of WFs and vegetation indices on wheat yellow rust through linear discriminant analysis and support vector machine (SVM) classification frameworks in different infestation stages, respectively. The results show that WFs-SVM have promising potential for wheat yellow rust monitoring in both the 26 DAI and 42 DAI stages.
546 _aText in English
650 7 _2AGROVOC
_96664
_aMonitoring
650 7 _aPlant diseases
_gAGROVOC
_2
_91206
650 7 _2AGROVOC
_911401
_aUnmanned aerial vehicles
700 0 _918428
_aWenjiang Huang
700 0 _918445
_aHuichun Ye
700 0 _918446
_aYingying Dong
700 0 _918447
_aYue Shi
700 0 _918448
_aShuisen Chen
773 0 _gv. 59, no. 26, p. 8003-8013
_dUSA : OSA Publishing, 2020.
_x1559-128X
_tApplied Optics
942 _cJA
_n0
_2ddc