000 nab a22 7a 4500
999 _c62315
_d62307
001 62315
003 MX-TxCIM
005 20200724231622.0
008 200124s2016 xxu|||p|op||| 00| 0 eng d
022 _a0036-8075
022 _a 1095-9203 (Online)
024 8 _ahttps://doi.org/10.1126/science.aaf2091
040 _aMX-TxCIM
041 _aeng
100 1 _914780
_aBrown, K.A.
245 1 0 _aLight-driven dinitrogen reduction catalyzed by a CdS :
_bnitrogenase MoFe protein biohybrid
260 _aWashington, DC (USA) :
_bAAAS,
_c2016.
500 _aPeer review
520 _aThe splitting of dinitrogen (N2) and reduction to ammonia (NH3) is a kinetically complex and energetically challenging multistep reaction. In the Haber-Bosch process, N2 reduction is accomplished at high temperature and pressure, whereas N2 fixation by the enzyme nitrogenase occurs under ambient conditions using chemical energy from adenosine 5′-triphosphate (ATP) hydrolysis. We show that cadmium sulfide (CdS) nanocrystals can be used to photosensitize the nitrogenase molybdenum-iron (MoFe) protein, where light harvesting replaces ATP hydrolysis to drive the enzymatic reduction of N2 into NH3. The turnover rate was 75 per minute, 63% of the ATP-coupled reaction rate for the nitrogenase complex under optimal conditions. Inhibitors of nitrogenase (i.e., acetylene, carbon monoxide, and dihydrogen) suppressed N2 reduction. The CdS:MoFe protein biohybrids provide a photochemical model for achieving light-driven N2 reduction to NH3.
546 _aText in English
650 7 _2AGROVOC
_92912
_aNitrogen
650 7 _2AGROVOC
_914781
_aNitrogenase
650 7 _2AGROVOC
_98925
_aMolybdenum
650 7 _2AGROVOC
_914782
_aCadmium
700 1 _914783
_aHarris, D.F.
700 1 _914784
_aWilker, M.B.
700 1 _914785
_aRasmussen, A.
700 1 _914786
_aKhadka, N.
700 1 _914787
_aHamby, H.
700 1 _914788
_aKeable, S.
700 1 _914789
_aDukovic, G.
700 1 _914790
_aPeters, J.W.
700 1 _914791
_aSeefeldt, L.C.
700 1 _914792
_aKing, P.W.
773 0 _dWashington, DC (USA) : AAAS, 2016.
_gv. 352 no. 6284, p. 448-450
_tScience
_x 0036-8075
_wu444126
942 _2ddc
_cJA
_n0