000 03411nab|a22004577a|4500
999 _c62255
_d62247
001 62255
003 MX-TxCIM
005 20240919021228.0
008 200712s2020||||xxk|||p|op||||00||0|eng|d
022 _a2045-2322
024 8 _ahttps://doi.org/10.1038/s41598-020-67874-x
040 _aMX-TxCIM
041 _aeng
100 1 _aJULIANA P.
_8001710082
_gFormerly ​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​Global Wheat Program
_gFormerly BISA
_92690
245 1 0 _aGenome-wide mapping and allelic fingerprinting provide insights into the genetics of resistance to wheat stripe rust in India, Kenya and Mexico
260 _aLondon (United Kingdom) :
_bNature Publishing Group,
_c2020.
500 _aPeer review
500 _aOpen Access
520 _aStripe or yellow rust (YR) caused by Puccinia striiformis Westend. f. sp. tritici Erikss. is a persistent biotic-stress threatening global wheat production. To broaden our understanding of the shared genetic basis of YR resistance across multi-site and multi-year evaluations, we performed a large genome-wide association study using 43,706 YR observations on 23,346 wheat lines from the International Maize and Wheat Improvement Center evaluated between 2013 and 2019 at sites in India, Kenya and Mexico, against predominant races prevalent in the countries.We identified 114 repeatable markers tagging 20 quantitative trait loci (QTL) associated with YR on ten chromosomes including 1D, 2A, 2B, 2D, 3A, 4A, 4D, 5A, 5B and 6B, among which four QTL, QYr.cim-2DL.2, QYr.cim-2AS.1, QYr.cim-2BS.2 and QYr.cim-2BS.3 were significant in more than ten datasets.Furthermore, we report YR-associated allelic fingerprints for the largest panel of wheat breeding lines (52,067 lines) till date, creating substantial opportunities for YR favorable allele enrichment using molecular markers. Overall, the markers and fingerprints reported in this study provide excellent insights into the genetic architecture of YR resistance in different geographical regions, time-periods and wheat germplasm and are a huge resource to the global wheat breeding community for accelerating YR resistance breeding efforts.
546 _aText in English
650 7 _2AGROVOC
_99025
_aPlant Genetics
650 7 _2AGROVOC
_91848
_aGenetic markers
650 7 _2AGROVOC
_91132
_aGenomics
650 7 _aPlant breeding
_gAGROVOC
_2
_91203
651 7 _2AGROVOC
_93726
_aIndia
651 7 _2AGROVOC
_93783
_aKenya
651 7 _2AGROVOC
_91318
_aMexico
700 1 _aSingh, R.P.
_gGlobal Wheat Program
_8INT0610
_9825
700 1 _aHuerta-Espino, J.
_gGlobal Wheat Program
_8CHUE01
_9397
700 1 _aBhavani, S.
_8INT2843
_9867
_gGlobal Wheat Program
700 1 _aRandhawa, M.S.
_8I1706569
_91665
_gGlobal Wheat Program
700 1 _aKumar, U.
_gFormerly Borlaug Institute for South Asia (BISA)
_8INT3331
_9921
700 1 _aJoshi, A.K.
_8INT2917
_9873
_gGlobal Wheat Program
700 1 _aBhati, P.K.
_97677
700 1 _aVillaseñor Mir, H.E.
_9360
700 1 _aMishra, C.N.
_914669
700 1 _aSingh, G.P.
_91877
773 0 _tNature Scientific Reports
_gv. 10, no. 1, art. 10908
_dLondon (United Kingdom) : Nature Publishing Group, 2020.
_x2045-2322
_wa58025
856 4 _yOpen Access through DSpace
_uhttps://hdl.handle.net/10883/20918
942 _cJA
_n0
_2ddc