000 | 03763nab|a22005537a|4500 | ||
---|---|---|---|
999 |
_c61626 _d61618 |
||
001 | 61626 | ||
003 | MX-TxCIM | ||
005 | 20240919021228.0 | ||
008 | 200331s2020||||sz |||p|op||||00||0|eng|d | ||
022 | _a1664-462X | ||
024 | 8 | _ahttps://doi.org/10.3389/fpls.2020.00353 | |
040 | _aMX-TxCIM | ||
041 | _aeng | ||
100 | 1 |
_aSantantonio, N. _912124 |
|
245 | 1 | 0 | _aStrategies for effective use of genomic information in crop breeding programs serving Africa and South Asia |
260 |
_aBasel (Switzerland) : _bFrontiers, _c2020. |
||
500 | _aPeer review | ||
500 | _aOpen Access | ||
520 | _aMuch of the world’s population growth will occur in regions where food insecurity is prevalent, with large increases in food demand projected in regions of Africa and South Asia. While improving food security in these regions will require a multi-faceted approach, improved performance of crop varieties in these regions will play a critical role. Current rates of genetic gain in breeding programs serving Africa and South Asia fall below rates achieved in other regions of the world. Given resource constraints, increased genetic gain in these regions cannot be achieved by simply expanding the size of breeding programs. New approaches to breeding are required. The Genomic Open-source Breeding informatics initiative (GOBii) and Excellence in Breeding Platform (EiB) are working with public sector breeding programs to build capacity, develop breeding strategies, and build breeding informatics capabilities to enable routine use of new technologies that can improve the efficiency of breeding programs and increase genetic gains. Simulations evaluating breeding strategies indicate cost-effective implementations of genomic selection (GS) are feasible using relatively small training sets, and proof-of-concept implementations have been validated in the International Maize and Wheat Improvement Center (CIMMYT) maize breeding program. Progress on GOBii, EiB, and implementation of GS in CIMMYT and International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) breeding programs are discussed, as well as strategies for routine implementation of GS in breeding programs serving Africa and South Asia. | ||
526 |
_aMCRP _bFP2 _bFP3 |
||
526 | _aEIB | ||
546 | _aText in English | ||
650 | 7 |
_2AGROVOC _910737 _aMarker-assisted selection |
|
650 | 7 |
_aPlant breeding _gAGROVOC _2 _91203 |
|
650 | 7 |
_2AGROVOC _94741 _aExperimental design |
|
651 | 7 |
_91316 _aAfrica |
|
651 | 7 |
_2AGROVOC _91956 _aSouth Asia |
|
700 | 1 |
_aAtanda, A.S. _8001711295 _8001712571 _gGlobal Maize Program _gFormerly Global Wheat Program _98531 |
|
700 | 1 |
_aBeyene, Y. _9870 _8INT2891 _gGlobal Maize Program |
|
700 | 1 |
_aVarshney, R.K. _95901 |
|
700 | 1 |
_aOlsen, M. _9923 _8INT3333 _gGlobal Maize Program |
|
700 | 1 |
_aJones, E. _97905 |
|
700 | 1 |
_aRoorkiwal, M. _96147 |
|
700 | 1 |
_aGowda, M. _9795 _8I1705963 _gGlobal Maize Program |
|
700 | 0 |
_aChellapilla Bharadwaj _97896 |
|
700 | 0 |
_aPooran M. Gaur _97895 |
|
700 | 0 |
_aXuecai Zhang _gGlobal Maize Program _8INT3400 _9951 |
|
700 | 1 |
_aDreher, K.A. _9808 _8I1706147 _gGenetic Resources Program |
|
700 | 1 |
_aAYALA HERNÁNDEZ, C. _98530 _gGenetic Resources Program |
|
700 | 1 |
_aCrossa, J. _gGenetic Resources Program _8CCJL01 _959 |
|
700 | 1 |
_aPerez-Rodriguez, P. _92703 |
|
700 | 1 |
_aRathore, A. _8001712937 _gExcellence in Breeding _97897 |
|
700 | 1 |
_aYanxin Gao _8001713594 _gFormerly Excellence in Breeding _95786 |
|
700 | 1 |
_aMcCouch, S. _9594 |
|
700 | 1 |
_aRobbins, K. _95987 |
|
773 | 0 |
_tFrontiers in Plant Science _gv. 11, art. 353 _dSwitzerland : Frontiers, 2020. _x1664-462X _wu56875 |
|
856 | 4 |
_yOpen Access through DSpace _uhttps://hdl.handle.net/10883/20819 |
|
942 |
_cJA _n0 _2ddc |