000 nab a22 7a 4500
999 _c61238
_d61230
001 61238
003 MX-TxCIM
005 20200127182356.0
008 200123s2019 ne |||p|op||| 00| 0 eng d
022 _a1574-0862 (Online)
024 8 _ahttps://doi.org/10.1111/agec.12531
040 _aMX-TxCIM
041 _aeng
100 0 _911126
_aXiaowei Jia
245 1 0 _aBringing automated, remote‐sensed, machine learning methods to monitoring crop landscapes at scale
260 _aAmsterdam (Netherlands) :
_bIAAE :
_bWiley,
_c2019.
500 _aPeer review
520 _aThis article provides an overview of how recent advances in machine learning and the availability of data from earth observing satellites can dramatically improve our ability to automatically map croplands over long periods and over large regions. It discusses three applications in the domain of crop monitoring where machine learning (ML) approaches are beginning to show great promise. For each application, it highlights machine learning challenges, proposed approaches, and recent results. The article concludes with discussion of major challenges that need to be addressed before ML approaches will reach their full potential for this problem of great societal relevance.
546 _aText in English
650 7 _2AGROVOC
_911127
_aMachine learning
650 7 _2AGROVOC
_911128
_aCrop monitoring
650 7 _2AGROVOC
_91986
_aRemote sensing
700 1 _911129
_aKhandelwal, A.
700 1 _911130
_aMulla, D.J.
700 1 _99428
_aPardey, P.G.
700 1 _911131
_aKumar, V.
773 0 _dAmsterdam (Netherlands) : IAAE : Wiley, 2019.
_gv. 50, S1, p. 41-50
_tAgricultural Economics
_x1574-0862
_wu444456
942 _2ddc
_cJA
_n0