000 02510nab a22003737a 4500
999 _c58163
_d58155
001 58163
003 MX-TxCIM
005 20240919020949.0
008 150722s2016 xxu|||p|op||| 00| 0 eng d
024 8 _ahttps://doi.org/10.1534/g3.116.028118
040 _aMX-TxCIM
100 1 _92702
_aMontesinos-Lopez, A.
245 1 0 _aGenomic bayesian prediction model for count data with genotype X environment interaction
260 _aBethesda, MD :
_bGenetics Society of America,
_c2016.
500 _aOpen Access
500 _aPeer review
520 _aGenomic tools allow the study of the whole genome and are facilitating the study of genotype-environment combinations and their relationship with phenotype. However, most genomic prediction models developed so far are appropriate for Gaussian phenotypes. For this reason, appropriate genomic prediction models are needed for count data, since the conventional regression models used on count data with a large sample size (nT) and a small number of parameters (p) cannot be used for genomic-enabled prediction where the number of parameters (p) is larger than the sample size (nT). Here we propose a Bayesian mixed negative binomial (BMNB) genomic regression model for counts that takes into account genotype by environment (G×E) interaction. We also provide all the full conditional distributions to implement a Gibbs sampler. We evaluated the proposed model using a simulated data set and a real wheat data set from the International Maize and Wheat Improvement Center (CIMMYT) and collaborators. Results indicate that our BMNB model is a viable alternative for analyzing count data.
526 _aWC
_cFP2
546 _aText in English
650 7 _94013
_aBayesian theory
_2AGROVOC
650 7 _91132
_aGenomics
_2AGROVOC
650 7 _91133
_aGenotype environment interaction
_2AGROVOC
700 1 _92700
_aMontesinos-Lopez, O.A.
_gGenetic Resources Program
_8I1706800
700 1 _9907
_aBurgueño, J.
_gGenetic Resources Program
_8INT3239
700 1 _92704
_aEskridge, K.
700 1 _92681
_aFalconi, E.E.
700 1 _9913
_aXinyao He
_gGlobal Wheat Program
_8INT3297
700 1 _aPawan Kumar Singh
_gGlobal Wheat Program
_8INT2868
_9868
700 1 _94014
_aCichy, K.
700 1 _aCrossa, J.
_gGenetic Resources Program
_8CCJL01
_959
773 0 _wu56922
_x2160-1836
_dBethesda, MD : Genetics Society of America,
_tG3
_gv. 7, no. 2, p. 1165-1177
856 4 _uhttp://hdl.handle.net/10883/18637
_yOpen Access through DSpace
942 _2ddc
_cJA
_n0