000 | 01727nam a22004457a 4500 | ||
---|---|---|---|
001 | G75915 | ||
003 | MX-TxCIM | ||
005 | 20240919021056.0 | ||
008 | 121211s ||||f| 0 p|p||0|| | | ||
020 | _a970-648-096-X | ||
040 | _aMX-TxCIM | ||
072 | 0 | _aF01 | |
072 | 0 | _aU10 | |
082 | 0 | 4 |
_a633.1553 _bBEL |
100 | 1 |
_aCoe, R. _uQuantitative analysis of data from participatory methods in plant breeding |
|
245 | 0 | 0 | _aAnalyzing data from participatory on-farm trials |
260 |
_aMexico, DF (Mexico) _bCIMMYT : _c2002 |
||
300 | _ap. 18-34 | ||
340 | _aPrinted | ||
500 | _aStatistics, graphs, tables | ||
520 | _aResearchers conducting participatory on1arm trials, particularly variety selection trials, often have difficulty analyzing the resulting data. The irregularity of trial designs means that some of the standard tools based on analysis of variance are not appropriate. In this paper some simple extensions to analysis of variance, using general linear models and linear mixed models, are shown to facilitate insightful analysis of these awkward designs. | ||
546 | _aEnglish | ||
591 | _a0109|AGRIS 0201|AL-Economics Program|R02CIMPU | ||
593 | _aJuan Carlos Mendieta | ||
595 | _aCPC | ||
650 | 1 | 0 |
_aAgroforestry _92210 |
650 | 1 | 0 |
_aAgroforestry _92210 |
650 | 1 | 7 |
_aCrop yield _gAGROVOC _2 _91066 |
650 | 1 | 0 | _aData analysis |
650 | 1 | 0 | _aEnvironmental factors |
650 | 1 | 0 |
_aFarmers _gAGROVOC _91654 |
650 | 1 | 7 |
_aMaize _gAGROVOC _2 _91173 |
650 | 1 | 0 |
_aStatistical methods _92624 |
650 | 1 | 0 |
_aVariety trials _92474 |
653 | 0 | _aCIMMYT | |
650 | 1 | 0 |
_91952 _aSoil fertility _gAGROVOC |
650 | 1 | 7 |
_aPlant breeding _gAGROVOC _2 _91203 |
700 | 1 |
_aBellon, M.R.|Reeves, J. _eeds. |
|
942 | _cBK | ||
999 |
_c5624 _d5624 |