000 01730nam a22003737a 4500
001 G67882
003 MX-TxCIM
005 20240624235240.0
008 121211s1999|f| mx |p||0|| | e eng dd
040 _aMX-TxCIM
041 _aeng
072 0 _aP40
090 _aLook under series title
100 _97228
_aHartkamp, A.D.
245 1 0 _aInterpolation techniques for climate variables
260 _aMexico :
_bCIMMYT,
_c1999.
300 _a26 pages
340 _aPrinted|Computer File
490 _aCIMMYT NRG-GIS Series ;
_v99-01
_x1405-7484
500 _aOpen Access
520 _aThis paper examines statistical approaches for interpolating climatic data over large regions., providing a brief introduction to interpolation techniques for climate variables of use in agricultural research, as well as general recommendations for future research to assess interpolation techniques. Three approaches 1) inverse distance weighted averaging (IDWA), 2)thin plate smoothing splines and 3) co-kriging were evaluated for a 2,000 km2 square area covering the state of Jalisco, México. Taking into account valued error prediction, data assumptions, and computational simplicity, we recommend use of thin-plate smoothing splines for interpolating climate variables.
546 _aText in English
591 _aLSLinks|9912|AGRIS 0001|R99-00CIMPU|EE|DSpace 1
595 _aCPC
599 _a5951.jpg
650 1 7 _aAgriculture
_gAGROVOC
_91007
650 1 0 _aClimatic factors
_91048
650 1 0 _aStatistical methods
_92624
700 _aDe Beurs, K.
_97229
700 _aStein, A.
_97230
700 1 _aWhite, J.W.
_91789
856 4 _uhttp://hdl.handle.net/10883/988
_yOpen Access through DSpace
942 _cBK
_2ddc
999 _c53652
_d53652