000 | 01982nam a22004457a 4500 | ||
---|---|---|---|
001 | G13178 | ||
003 | MX-TxCIM | ||
005 | 20240919021151.0 | ||
008 | 121211s19 |f| mx |p||0|| | s 0 en d | ||
040 | _aMX-TxCIM | ||
041 | 0 | _aspa | |
043 | _amx | ||
072 | 0 | _aF30 | |
090 |
_aCIM _b0005-R EN |
||
111 | 2 |
_aSymposium on Principles and Methods in Crop Improvement for Drought Resistance: With emphasis on Rice _c(Philippines : _d4-8 May 1981) |
|
245 | 1 | 0 | _aBreeding and selection for drought resistance in tropical maize |
260 |
_aMexico : _bCIMMYT, _c1982. |
||
300 | _a16 pages. | ||
340 | _aPrinted | ||
500 | _aOpen Access | ||
500 | _aAlso available in Spanish | ||
520 | _aThroughout the lowland wet tropics, periodic nonprotracted drought caused by irregular rainfall distribution is responsible for sizable reductions in maize yield. This is particularly true when reduced water availability coincides with the critical stage of crop development--flowering. Such a drought cannot be escaped by genotype maturity or planting date, nor are other species necessarily better adapted. Improving resistance of maize to this particular type of drought, then, could enhance productivity and minimize farmer risk. From a comparison of sorghum and maize under drought, it appears that sorghum maintains photosynthesis and growth at lower water | ||
546 | _aText in English | ||
591 | _aDSpace 2 | ||
595 | _aCPC | ||
650 | 1 | 7 |
_aBreeding methods _gAGROVOC _91030 |
650 | 1 | 0 | _aDrought resistance |
650 | 1 | 0 | _aHumid tropics |
650 | 1 | 0 |
_91913 _aPhotosynthesis _gAGROVOC |
650 | 1 | 7 |
_aRice _gAGROVOC _91243 |
650 | 1 | 0 | _aTropical zones |
650 | 1 | 0 |
_91314 _aZea mays |
650 | 1 | 0 |
_91313 _aYields |
650 | 1 | 7 |
_aPlant breeding _gAGROVOC _2 _91203 |
700 | 1 |
_aFischer, K.S. _95519 |
|
700 | 1 | _aJohnson, E.C., | |
700 | 1 |
_aEdmeades, G.O. _95520 |
|
856 | 4 |
_uhttp://hdl.handle.net/10883/3694 _yOpen Access through DSpace |
|
942 |
_cPRO _2ddc |
||
999 |
_c33694 _d33694 |