000 02911nab a22003497a 4500
001 G98931
003 MX-TxCIM
005 20231018181308.0
008 121211b |||p||p||||||| |z||| |
022 _a1435-0653 (Revista en electrónico)
022 0 _a0011-183X
040 _aMX-TxCIM
041 0 _aEn
100 1 _aNdhlela, T.
245 0 0 _aGenotype X Environment Interaction|of Maize Grain Yield Using AMMI Biplots
260 _c2014
500 _aPeer-review: Yes - Open Access: Yes|http://ip-science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0011-183X
520 _aMaize (Zea mays) is the most important cereal crop in Zimbabwe and is grown by both large- and small-scale farmers who are located in different agro-ecological zones of the country. The development and dissemination of adapted and high-yielding maize cultivars to these agro-ecological zones involves conducting multi-environment trials (METs). This study was conducted with the objectives of i) understanding complex G × E interaction and stability of single cross hybrids generated using CIMMYT elite drought tolerant lines and Department of Research and Specialist Services (DR&SS) elite drought susceptible lines for grain yield across stress and nonstress environments and ii) to identify genotypes to recommend for further use in the breeding program. Initially, yield data of 80 maize single cross hybrids tested across seven environments during the 2009 to 2010 and 2010 to 2011 seasons were analyzed using the additive main effects and multiplicative interaction (AMMI) biplot method. The analysis was further done for 20 best performing genotypes to facilitate less congested graphical presentation. Combined analysis of variance showed highly significant differences for the G × E interaction, indicating the possibility of selection for stable genotypes. The five AMMI interaction principal component analyses (IPCAs; IPCA1, IPCA2, IPCA3, IPCA4, and IPCA5) explained 82.41% of the variation and they were highly significant. The results showed three genotypes with high yield performance and broad adaptability whilst narrow adaptations were also observed. Agricultural Research Trust Farm was the most powerful site in discriminating among genotypes and the most representative environment.
536 _aGlobal Maize Program
546 _aEnglish
591 _aCIMMYT Informa No. 1889
593 _aLucia Segura
594 _aINT2714|INT2636
595 _aCSC
700 1 _aHerselman, L.,
_ecoaut.
_9119
700 1 _92259
_aLabuschagne, M.
700 1 _aMutimaamba, C.,
_ecoaut.
_92527
700 1 _aSetimela, P.S.
_gFormerly Global Maize Program
_gFormerly Sustainable Intensification Program
_gSustainable Agrifood Systems
_8INT2636
_9846
700 1 _aMagorokosho, C.
_gFormerly Global Maize Program
_8INT2714
_9854
773 0 _tCrop Science
_gv. 54, no. 5, p. 1992-1999
942 _cJA
999 _c30540
_d30540