000 02106nab a22003977a 4500
001 G98566
003 MX-TxCIM
005 20240919020947.0
008 121211b |||p||p||||||| |z||| |
022 _a1525-3163 (Revista en electrónico)
022 0 _a0021-8812
024 8 _ahttps://doi.org/10.2527/jas.2012-6162
040 _aMX-TxCIM
041 0 _aEn
100 1 _92703
_aPerez-Rodriguez, P.
245 0 0 _aTechnical Note:
_b An R package for fitting Bayesian regularized neural networks with applications in animal breeding
260 _c2013
500 _aPeer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0021-8812
520 _aIn recent years, several statistical models have been developed for predicting genetic values for complex traits using information on dense molecular markers, pedigrees or both. These models include, among others, the Bayesian Regularized Neural Networks (BRNN) that have been widely used in prediction problems in other fields of application and, more recently, for genome-enabled prediction. The R brnn package described here implements BRNN models and extends these to include both additive and dominance effects. The implementation takes advantage of multicore architectures via a parallel computing approach using openMP (Open Multiprocessing) for the computations. This note briefly describes the classes of models that can be fitted using the brnn package, and it also illustrates its use through several real examples.
536 _aGenetic Resources Program
546 _aEnglish
593 _aLucia Segura
594 _aCCJL01
595 _aCSC
650 1 0 _aAnimal model
650 1 0 _aBRNN
650 1 0 _adominance and additive effects
650 1 0 _aGenomic selection
_91513
650 1 0 _anon-parametric models
700 1 _aGianola, D.,
_ecoaut.
700 1 _aRosa, G.J.M.,
_ecoaut.
700 1 _aWeigel, K.A.,
_ecoaut.
700 1 _aCrossa, J.
_gGenetic Resources Program
_8CCJL01
_959
773 0 _tJournal of Animal Science
_gv. 91, no. 8, p. 3522-3531
942 _cJA
999 _c30436
_d30436