000 03436nab a22005177a 4500
001 G90190
003 MX-TxCIM
005 20240919020946.0
008 210702s2007 xxu|||p|op||| 00| 0 eng d
022 _a1943-2631 (Online)
022 _a0016-6731
024 8 _ahttps://doi.org/10.1534/genetics.107.078659
040 _aMX-TxCIM
041 _aeng
090 _aCIS-5124
100 1 _aCrossa, J.
_gGenetic Resources Program
_8CCJL01
_959
245 1 0 _aAssociation analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure
260 _aUSA :
_bGenetics Society of America,
_c2007.
340 _aComputer File|Printed
500 _aPeer review
500 _aPeer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=1943-2631
520 _aLinkage disequilibrium can be used for identifying associations between traits of interest and genetic markers. This study used mapped diversity array technology (DArT) markers to find associations with resistance to stem rust, leaf rust, yellow rust, and powdery mildew, plus grain yield in five historical wheat international multienvironment trials from the International Maize and Wheat Improvement Center (CIMMYT). Two linear mixed models were used to assess marker–trait associations incorporating information on population structure and covariance between relatives. An integrated map containing 813 DArT markers and 831 other markers was constructed. Several linkage disequilibrium clusters bearing multiple host plant resistance genes were found. Most of the associated markers were found in genomic regions where previous reports had found genes or quantitative trait loci (QTL) influencing the same traits, providing an independent validation of this approach. In addition, many new chromosome regions for disease resistance and grain yield were identified in the wheat genome. Phenotyping across up to 60 environments and years allowed modeling of genotype x environment interaction, thereby making possible the identification of markers contributing to both additive and additive x additive interaction effects of traits.
536 _aGenetic Resources Program|Global Wheat Program
546 _aText in English
594 _aINT2692|CCJL01|INT3239|INT1511|INT2833|INT0610
650 7 _2AGROVOC
_91265
_aSoft wheat
650 7 _2AGROVOC
_91136
_aGermplasm
650 7 _2AGROVOC
_91848
_aGenetic markers
650 7 _2AGROVOC
_96025
_aLinear models
650 7 _2AGROVOC
_91133
_aGenotype environment interaction
700 1 _9907
_aBurgueño, J.
_gGenetic Resources Program
_8INT3239
700 1 _9851
_aDreisigacker, S.
_gGlobal Wheat Program
_8INT2692
700 1 _93542
_aVargas, M.
700 1 _92073
_aHerrera-Foessel, S.
700 1 _91659
_aLillemo, M.
700 1 _aSingh, R.P.
_gGlobal Wheat Program
_8INT0610
_9825
700 1 _9341
_aTrethowan, R.M.
700 1 _94138
_aWarburton, M.L.
700 1 _aFranco, J.
_8CFRN01
_gFormerly Genetic Resources Program
_9494
700 1 _aReynolds, M.P.
_gGlobal Wheat Program
_8INT1511
_9831
700 1 _95274
_a Crouch, J.H.
700 1 _95322
_aOrtiz, R.
773 0 _tGenetics
_n634959
_gv. 177, no. 3, p. 1889-1913
_dUSA : Genetics Society of America, 2007.
_wG444332
_x0016-6731
856 4 _yAccess only for CIMMYT Staff
_uhttps://hdl.handle.net/20.500.12665/652
942 _cJA
_2ddc
_n0
999 _c26902
_d26902