Knowledge Center Catalog

Potential predictability of crop yield using an ensemble climate forecast by a regional circulation model

By: Contributor(s): Material type: ArticleArticleLanguage: En Publication details: 2008Subject(s): In: Agricultural and Forest Meteorology v. 148, no. 8-9, p. 1353-1361Summary: Global/RegionalCirculationModels (GCM/RCM) predict the interannual climate variability better than the absolute values of meteorological variables. Statistical bias-correction methods increase the quality of daily model predictions of incoming solar radiation, maximum and minimum temperatures and rainfall frequency and amount. However, when bias-corrected forecasts/hindcasts are used by dynamic cropmodels, timing of dry-spell occurrences generate the largest uncertainty during the linking process. In this study, we used 20 ensemble members of an 18-year period provided by the Florida State University/Center for Ocean-Atmospheric Prediction Studies (FSU/COAPS) regional spectral model coupled to the National Center for Atmospheric Research Community Land Model (CLM2). The daily seasonal-climate hindcast was bias-corrected and used as input to the CERES-Maize model, thus producing 20 cropyieldensemble members. Using observed weather data for the same period, a time series of simulated cropyields was produced. Finally, principal component (PC) regression analysis was used to predict this time series using the cropyieldensemble members as predictors. Between 13.7 and 28.8% of the simulated corn yield interannual variability was explained using only one principal component (p < 0.05), and estimated yields were in the correct tercile by margins of 16.7 to 38.2% beyond chance. Predictability of simulated corn yields using principal components was improved relative to the use of bias-corrected daily hindcasts. Bias-correcting all meteorological variables used by the cropmodel increased predictability skills compared with use of raw hindcasts, individual bias-correction of rainfall, and climatological values.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library Reprints Collection Available
Total holds: 0

Global/RegionalCirculationModels (GCM/RCM) predict the interannual climate variability better than the absolute values of meteorological variables. Statistical bias-correction methods increase the quality of daily model predictions of incoming solar radiation, maximum and minimum temperatures and rainfall frequency and amount. However, when bias-corrected forecasts/hindcasts are used by dynamic cropmodels, timing of dry-spell occurrences generate the largest uncertainty during the linking process. In this study, we used 20 ensemble members of an 18-year period provided by the Florida State University/Center for Ocean-Atmospheric Prediction Studies (FSU/COAPS) regional spectral model coupled to the National Center for Atmospheric Research Community Land Model (CLM2). The daily seasonal-climate hindcast was bias-corrected and used as input to the CERES-Maize model, thus producing 20 cropyieldensemble members. Using observed weather data for the same period, a time series of simulated cropyields was produced. Finally, principal component (PC) regression analysis was used to predict this time series using the cropyieldensemble members as predictors. Between 13.7 and 28.8% of the simulated corn yield interannual variability was explained using only one principal component (p < 0.05), and estimated yields were in the correct tercile by margins of 16.7 to 38.2% beyond chance. Predictability of simulated corn yields using principal components was improved relative to the use of bias-corrected daily hindcasts. Bias-correcting all meteorological variables used by the cropmodel increased predictability skills compared with use of raw hindcasts, individual bias-correction of rainfall, and climatological values.

English

Carelia Juarez

Reprints Collection


International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org