Knowledge Center Catalog

Field-based evaluation of vernalization requirement, photoperiod response and earliness per se in bread wheat (Triticum aestivum L.)

By: Contributor(s): Material type: ArticleArticleLanguage: En Publication details: 2008ISSN:
  • 0378-4290
Subject(s): In: Field Crops Research v. 105, no. 3, p. 193-201Summary: Vernalization requirement, photoperiod response and earliness per se (EPS) of bread wheat cultivars are often determined using controlled environments. However, use of non-field conditions may reduce the applicability of results for predicting field performance as well as increase the cost of evaluations. This research was undertaken, therefore, to determine whether field experiments could replace controlled environment studies and provide accurate characterization of these three traits among winter wheat cultivars. Twenty-six cultivars were evaluated under field conditions using two natural photoperiod regimes (from different transplanting dates) and vernalization pre-treatments. Relative responses to vernalization (RRVGDD) and photoperiod (RRPGDD) were quantified using the reciprocal of thermal time to end of ear emergence, whereas earliness per se was estimated by calculating thermal time from seedling emergence until end of ear emergence for fully vernalized and lately planted material. An additional index based on final leaf numbers was also calculated to characterize response to vernalization (RRVFLN). To test whether the obtained indices have predictive power, results were compared with cultivar parameters estimated for the CSM-Cropsim-CERES-Wheat model Version 4.0.2.0. For vernalization requirement, RRVGDD was compared with the vernalization parameter P1V, for photoperiod (RRPGDD), with P1D, and for earliness per se, EPS was compared with the sum of the component phase durations. Allowing for variation in EPS in the calibration improved the relation between observed versus simulated data substantially: correlations of RRPGDD with P1D increased from r2 = .34 ( p < .01), to .82 ( p < .001), and of RRVGDD with P1V, from r2 = .88 ( p < .001), to .94 ( p < .001). In comparisons of observed versus simulated anthesis dates for independent field experiments, the estimated model coefficients resulted in an r2 of .98 ( p < .001) and root mean square error of 1d. Overall, the results indicated that combining planting dates with vernalization pre-treatments can permit reliable, quantitative characterization of vernalization requirement, photoperiod response and EPS of wheat cultivars. Furthermore, emphasize the need for further study to clarify aspects that determine EPS, including whether measured EPS varies with temperature or other factors.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library Reprints Collection Available
Total holds: 0

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0378-4290

Vernalization requirement, photoperiod response and earliness per se (EPS) of bread wheat cultivars are often determined using controlled environments. However, use of non-field conditions may reduce the applicability of results for predicting field performance as well as increase the cost of evaluations. This research was undertaken, therefore, to determine whether field experiments could replace controlled environment studies and provide accurate characterization of these three traits among winter wheat cultivars. Twenty-six cultivars were evaluated under field conditions using two natural photoperiod regimes (from different transplanting dates) and vernalization pre-treatments. Relative responses to vernalization (RRVGDD) and photoperiod (RRPGDD) were quantified using the reciprocal of thermal time to end of ear emergence, whereas earliness per se was estimated by calculating thermal time from seedling emergence until end of ear emergence for fully vernalized and lately planted material. An additional index based on final leaf numbers was also calculated to characterize response to vernalization (RRVFLN). To test whether the obtained indices have predictive power, results were compared with cultivar parameters estimated for the CSM-Cropsim-CERES-Wheat model Version 4.0.2.0. For vernalization requirement, RRVGDD was compared with the vernalization parameter P1V, for photoperiod (RRPGDD), with P1D, and for earliness per se, EPS was compared with the sum of the component phase durations. Allowing for variation in EPS in the calibration improved the relation between observed versus simulated data substantially: correlations of RRPGDD with P1D increased from r2 = .34 ( p < .01), to .82 ( p < .001), and of RRVGDD with P1V, from r2 = .88 ( p < .001), to .94 ( p < .001). In comparisons of observed versus simulated anthesis dates for independent field experiments, the estimated model coefficients resulted in an r2 of .98 ( p < .001) and root mean square error of 1d. Overall, the results indicated that combining planting dates with vernalization pre-treatments can permit reliable, quantitative characterization of vernalization requirement, photoperiod response and EPS of wheat cultivars. Furthermore, emphasize the need for further study to clarify aspects that determine EPS, including whether measured EPS varies with temperature or other factors.

English

Elsevier

Carelia Juarez

Reprints Collection


International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org