Knowledge Center Catalog

Local cover image
Local cover image

Measuring the potential for sustainable intensification of aquaculture in Bangladesh using life cycle assessment [Electronic Resource]

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Washington : National Academy of Sciences, 2018.Subject(s): Online resources: In: Proceedings of the National Academy of Sciences of the United States of America v. 115, no. 12, p. 2958-2963Summary: Food production is a major driver of global environmental change and the overshoot of planetary sustainability boundaries. Greater affluence in developing nations and human population growth are also increasing demand for all foods, and for animal proteins in particular. Consequently, a growing body of literature calls for the sustainable intensification of food production, broadly defined as "producing more using less". Most assessments of the potential for sustainable intensification rely on only one or two indicators, meaning that ecological trade-offs among impact categories that occur as production intensifies may remain unaccounted for. The present study addresses this limitation using life cycle assessment (LCA) to quantify six local and global environmental consequences of intensifying aquaculture production in Bangladesh. Production data are from a unique survey of 2, 678 farms, and results show multidirectional associations between the intensification of aquaculture production and its environmental impacts. Intensification (measured in material and economic output per unit primary area farmed) is positively correlated with acidification, eutrophication, and ecotoxicological impacts in aquatic ecosystems; negatively correlated with freshwater consumption; and indifferent with regard to global warming and land occupation. As production intensifies, the geographical locations of greenhouse gas (GHG) emissions, acidifying emissions, freshwater consumption, and land occupation shift from the immediate vicinity of the farm to more geographically dispersed telecoupled locations across the globe. Simple changes in fish farming technology and management practices that could help make the global transition to more intensive forms of aquaculture be more sustainable are identified.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

Food production is a major driver of global environmental change and the overshoot of planetary sustainability boundaries. Greater affluence in developing nations and human population growth are also increasing demand for all foods, and for animal proteins in particular. Consequently, a growing body of literature calls for the sustainable intensification of food production, broadly defined as "producing more using less". Most assessments of the potential for sustainable intensification rely on only one or two indicators, meaning that ecological trade-offs among impact categories that occur as production intensifies may remain unaccounted for. The present study addresses this limitation using life cycle assessment (LCA) to quantify six local and global environmental consequences of intensifying aquaculture production in Bangladesh. Production data are from a unique survey of 2, 678 farms, and results show multidirectional associations between the intensification of aquaculture production and its environmental impacts. Intensification (measured in material and economic output per unit primary area farmed) is positively correlated with acidification, eutrophication, and ecotoxicological impacts in aquatic ecosystems; negatively correlated with freshwater consumption; and indifferent with regard to global warming and land occupation. As production intensifies, the geographical locations of greenhouse gas (GHG) emissions, acidifying emissions, freshwater consumption, and land occupation shift from the immediate vicinity of the farm to more geographically dispersed telecoupled locations across the globe. Simple changes in fish farming technology and management practices that could help make the global transition to more intensive forms of aquaculture be more sustainable are identified.

Text in English

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org