Knowledge Center Catalog

Local cover image
Local cover image

Towards transforming cassava breeding : harnessing inbred-parentbased hybrid breeding strategies

By: Contributor(s): Material type: ArticleLanguage: English Publication details: United States of America : Maximum Academic Press, 2024.ISSN:
  • 2833-9851 (Online)
Subject(s): Online resources: In: Tropical Plants United States of America : Maximum Academic Press, 2024. v. 3, e025Summary: Genomics-assisted breeding has significantly improved recurrent selection in cassava. However, challenges persist with the use of heterozygous parents, hindering efficient trait introgression to meet the needs of ever-changing markets and environmental conditions. To address this, we propose an innovative approach – inbred-parent-based hybrid cassava breeding, aiming to transform cassava breeding by implementing backcrossing-based trait introgression, effectively purging deleterious mutations, and systematically exploring and utilizing heterosis. This perspective paper discusses the key drawbacks of heterozygous parent-based recurrent selection and outlines how the proposed approach overcomes these challenges. By leveraging the self-compatibility of cassava and advanced technologies like flower-inducing and doubled haploid technologies, along with genomics advancements and a global network, cassava breeding programs can achieve efficient, cost-effective, and accelerated inbred-parent-based hybrid breeding. In conclusion, we emphasize four crucial action areas to focus on for the initial phase to realize this transformation, i.e., understanding inbreeding depression, developing inbred or doubled haploid parents, purging genetic load, and identifying or creating heterotic pools. Through collective efforts and global collaboration, inbred-parent-based hybrid cassava breeding will transform cassava breeding and production, ensuring resilience and adaptability to significantly contribute to ending hunger and reducing poverty during the climate crisis.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Status
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

Genomics-assisted breeding has significantly improved recurrent selection in cassava. However, challenges persist with the use of heterozygous parents, hindering efficient trait introgression to meet the needs of ever-changing markets and environmental conditions. To address this, we propose an innovative approach – inbred-parent-based hybrid cassava breeding, aiming to transform cassava breeding by implementing backcrossing-based trait introgression, effectively purging deleterious mutations, and systematically exploring and utilizing heterosis. This perspective paper discusses the key drawbacks of heterozygous parent-based recurrent selection and outlines how the proposed approach overcomes these challenges. By leveraging the self-compatibility of cassava and advanced technologies like flower-inducing and doubled haploid technologies, along with genomics advancements and a global network, cassava breeding programs can achieve efficient, cost-effective, and accelerated inbred-parent-based hybrid breeding. In conclusion, we emphasize four crucial action areas to focus on for the initial phase to realize this transformation, i.e., understanding inbreeding depression, developing inbred or doubled haploid parents, purging genetic load, and identifying or creating heterotic pools. Through collective efforts and global collaboration, inbred-parent-based hybrid cassava breeding will transform cassava breeding and production, ensuring resilience and adaptability to significantly contribute to ending hunger and reducing poverty during the climate crisis.

Text in English

Nutrition, health & food security Poverty reduction, livelihoods & jobs Accelerated Breeding Genetic Innovation Bill & Melinda Gates Foundation (BMGF) United States Agency for International Development (USAID) Department for International Development (DFID)

https://hdl.handle.net/10568/152312

Click on an image to view it in the image viewer

Local cover image
Share

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org