Knowledge Center Catalog

Local cover image
Local cover image

Assessing the impacts of climate change on crop yields, soil organic carbon sequestration and N2O emissions in wheat–maize rotation systems

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Elsevier, 2024. Amsterdam (Netherlands) :ISSN:
  • 0167-1987
  • 1879-3444 (Online)
Subject(s): In: Soil and Tillage Research v. 240, art. 106088Summary: Straw retention has been widely implemented to increase soil organic carbon (SOC) sequestration and greenhouse gas (GHG) mitigation for global agriculture. However, the combined effects of long-term straw retention on crop production, SOC sequestration and GHG emissions response to climate change remain unknown. Two nearby wheat–maize rotation field experiments in the North China Plain, combined with local weather, soil and agronomic measurements, were used to evaluate the applicability of the SPACSYS model. The model was then applied to assess the response of crop yield, SOC storage and nitrous oxide (N2O) emissions to three nitrogen fertilizer application levels (100, 200, 400 kg N ha−1) and three representative concentration pathway scenarios (RCP2.6, RCP4.5 and RCP8.5) under straw retention for the wheat–maize rotation systems during 2021–2100. In general, the model was reasonably accurate with R2 and model efficiency (EF) ranging from 0.25 to 0.96 and 0.32–0.94, respectively. Climate change decreased wheat yield by 4–39%, while maize showed a slight increase (3%) under RCP2.6 and a decrease of 1–15% under RCP4.5 and RCP8.5. The SOC storage in the 0–20 cm soil increased at a rate of 73–195 kg C ha−1 yr−1 but decreased within the upper 1 m soil at 280–390 kg C ha−1 yr−1. Climate change reduced the positive effect of SOC sequestration except in RCP2.6 and stimulated substantial N2O emissions ranging from 1–7.5 to 2.9–23.2 kg N ha−1 yr−1, consequently, the global warming potential increased from –79–2555 to 548–9357 kg CO2-eq ha−1 yr−1 under various N fertilizer application levels. This study reveals that the negative feedback under climate change with modelling approach, and extensive efforts are needed to make adaptations to ensure food production and reduce GHG emissions in the future.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Straw retention has been widely implemented to increase soil organic carbon (SOC) sequestration and greenhouse gas (GHG) mitigation for global agriculture. However, the combined effects of long-term straw retention on crop production, SOC sequestration and GHG emissions response to climate change remain unknown. Two nearby wheat–maize rotation field experiments in the North China Plain, combined with local weather, soil and agronomic measurements, were used to evaluate the applicability of the SPACSYS model. The model was then applied to assess the response of crop yield, SOC storage and nitrous oxide (N2O) emissions to three nitrogen fertilizer application levels (100, 200, 400 kg N ha−1) and three representative concentration pathway scenarios (RCP2.6, RCP4.5 and RCP8.5) under straw retention for the wheat–maize rotation systems during 2021–2100. In general, the model was reasonably accurate with R2 and model efficiency (EF) ranging from 0.25 to 0.96 and 0.32–0.94, respectively. Climate change decreased wheat yield by 4–39%, while maize showed a slight increase (3%) under RCP2.6 and a decrease of 1–15% under RCP4.5 and RCP8.5. The SOC storage in the 0–20 cm soil increased at a rate of 73–195 kg C ha−1 yr−1 but decreased within the upper 1 m soil at 280–390 kg C ha−1 yr−1. Climate change reduced the positive effect of SOC sequestration except in RCP2.6 and stimulated substantial N2O emissions ranging from 1–7.5 to 2.9–23.2 kg N ha−1 yr−1, consequently, the global warming potential increased from –79–2555 to 548–9357 kg CO2-eq ha−1 yr−1 under various N fertilizer application levels. This study reveals that the negative feedback under climate change with modelling approach, and extensive efforts are needed to make adaptations to ensure food production and reduce GHG emissions in the future.

Text in English

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org