Knowledge Center Catalog

Local cover image
Local cover image

Silver nanoparticle regulates salt tolerance in wheat through changes in ABA concentration, ion homeostasis, and defense systems

By: Contributor(s): Material type: ArticleLanguage: English Publication details: Basel (Switzerland) : MDPI, 2020.ISSN:
  • 2218-273X (Online)
Subject(s): Online resources: In: Agronomy Basel (Switzerland) : MDPI, 2020. v. 10, no. 11, art. 1506Summary: Salinity is major abiotic stress affecting crop yield, productivity and reduces the land-usage area for agricultural practices. The purpose of this study is to analyze the effect of green-synthesized silver nanoparticle (AgNP) on physiological traits of wheat (Triticum aestivum) under salinity stress. Using augmented and high-throughput characterization of synthesized AgNPs, this study investigated the proximity of AgNPs-induced coping effects under stressful cues by measuring the germination efficiency, oxidative-biomarkers, enzymatic and non-enzymatic antioxidants, proline and nitrogen metabolism, stomatal dynamics, and ABA content. Taken together, the study shows a promising approach in salt tolerance and suggests that mechanisms of inducing the salt tolerance depend on proline metabolism, ions accumulation, and defense mechanisms. This study ascertains the queries regarding the correlation between nanoparticles use and traditional agriculture methodology; also significantly facilitates to reach the goal of sustainable developments for increasing crop productivity via much safer and greener approachability.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Status
Article CIMMYT Knowledge Center: John Woolston Library Reprints Collection Available
Total holds: 0

Peer review

Open Access

Salinity is major abiotic stress affecting crop yield, productivity and reduces the land-usage area for agricultural practices. The purpose of this study is to analyze the effect of green-synthesized silver nanoparticle (AgNP) on physiological traits of wheat (Triticum aestivum) under salinity stress. Using augmented and high-throughput characterization of synthesized AgNPs, this study investigated the proximity of AgNPs-induced coping effects under stressful cues by measuring the germination efficiency, oxidative-biomarkers, enzymatic and non-enzymatic antioxidants, proline and nitrogen metabolism, stomatal dynamics, and ABA content. Taken together, the study shows a promising approach in salt tolerance and suggests that mechanisms of inducing the salt tolerance depend on proline metabolism, ions accumulation, and defense mechanisms. This study ascertains the queries regarding the correlation between nanoparticles use and traditional agriculture methodology; also significantly facilitates to reach the goal of sustainable developments for increasing crop productivity via much safer and greener approachability.

Text in English

Click on an image to view it in the image viewer

Local cover image
Share

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org