Knowledge Center Catalog

Local cover image
Local cover image

Tillage effects on soil properties and crop yield after land reclamation

By: Contributor(s): Material type: ArticleLanguage: English Publication details: London (United Kingdom) : Nature Publishing Group, 2021.ISSN:
  • 2045-2322
Subject(s): Online resources: In: Nature Scientific Reports London (United Kingdom) : Nature Publishing Group, 2021. v. 11, art. 4611Summary: Tillage treatments have an important effect on soil microstructure characteristics, water thermal properties and nutrients, but little is known in the newly reclaimed cultivated land. For the reason, a long-term field study was to evaluate the tillage effects on soil physicochemical properties and crop yield in newly reclaimed cultivated land via the macroscopic and microscopic analysis. Three tillage treatments were tested: continuous conventional moldboard plow tillage (CT), sub-soiling/moldboard-tillage/sub-soiling tillage (ST) and no-tillage/sub-soiling/no-tillage (NT). Under CT, the microstructure was dominated by weakly separated plates structure and showed highest bulk density (BD) (1.49 g cm−3) and lowest soil organic matter (SOM) (3.68 g kg−1). In addition, CT reduced the capacity of soil moisture retention and temperature maintenance, resulting in aggregate structure deterioration and fragility. Unlike CT, the soil was characterized by moderately separated granular structure and highly separated aggregate structure under conservation tillage practice of ST and NT. NT was associated with the highest soil moisture content (20.42%), highest quantity of macroaggregates (> 0.25 mm) by wet-sieving (34.07%), and highest SOM (6.48 g kg−1) in the surface layer. Besides, NT was better able to regulate soil temperature and improved the values of geometric mean diameter. Under NT and ST, a stable soil structure with compound aggregates and pores was formed, and the maize yield was increased by 12.9% and 14.9% compared with CT, up to 8512.6 kg ha−1 and 8740.9 kg ha−1, respectively. These results demonstrated the positive effects of NT and ST on soil quality and crop yield in newly reclaimed cultivated land.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Status
Article CIMMYT Knowledge Center: John Woolston Library Reprints Collection Available
Total holds: 0

Peer review

Open Access

Tillage treatments have an important effect on soil microstructure characteristics, water thermal properties and nutrients, but little is known in the newly reclaimed cultivated land. For the reason, a long-term field study was to evaluate the tillage effects on soil physicochemical properties and crop yield in newly reclaimed cultivated land via the macroscopic and microscopic analysis. Three tillage treatments were tested: continuous conventional moldboard plow tillage (CT), sub-soiling/moldboard-tillage/sub-soiling tillage (ST) and no-tillage/sub-soiling/no-tillage (NT). Under CT, the microstructure was dominated by weakly separated plates structure and showed highest bulk density (BD) (1.49 g cm−3) and lowest soil organic matter (SOM) (3.68 g kg−1). In addition, CT reduced the capacity of soil moisture retention and temperature maintenance, resulting in aggregate structure deterioration and fragility. Unlike CT, the soil was characterized by moderately separated granular structure and highly separated aggregate structure under conservation tillage practice of ST and NT. NT was associated with the highest soil moisture content (20.42%), highest quantity of macroaggregates (> 0.25 mm) by wet-sieving (34.07%), and highest SOM (6.48 g kg−1) in the surface layer. Besides, NT was better able to regulate soil temperature and improved the values of geometric mean diameter. Under NT and ST, a stable soil structure with compound aggregates and pores was formed, and the maize yield was increased by 12.9% and 14.9% compared with CT, up to 8512.6 kg ha−1 and 8740.9 kg ha−1, respectively. These results demonstrated the positive effects of NT and ST on soil quality and crop yield in newly reclaimed cultivated land.

Text in English

Click on an image to view it in the image viewer

Local cover image
Share

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org