Knowledge Center Catalog

Local cover image
Local cover image

Spodoptera frugiperda (Noctuidae) fed on transgenic maize can transfer Bt proteins to Podisus nigrispinus (Pentatomidae)

By: Contributor(s): Material type: ArticleLanguage: English Publication details: Piracicaba, SP (Brazil) : Escola Superior de Agricultura Luiz de Queiroz, 2022.ISSN:
  • 1678-992X (Online)
Subject(s): Online resources: In: Scientia Agricola Piracicaba, SP (Brazil) : Escola Superior de Agricultura Luiz de Queiroz, 2022. v. 79, no. 4, e20210044Summary: An important concern with the use of genetically modified (GM) plants expressing Bacillus thuringiensis (Bt) insecticidal toxins is the deleterious effect on non–target organisms. The predatory stink bug Podisus nigrispinus (Dallas) (Hemiptera: Pentatomidae) is used in biological control programs and may be exposed to Bt toxins. This study evaluated the indirect effects of different Cry proteins on P. nigrispinus with the prey Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera: Noctuidae), fed on simple or pyramided Bt maize genotypes. The experiment was carried out in a completely randomized design with three treatments: i) Isohybrid (not Bt), ii) Herculex® (transgenic maize encoding Cry1F protein) and iii) PowerCore® (pyramidal transgenic maize encoding the Cry1F, Cry1A.105, and Cry2Ab2 proteins), which were used to feed S. frugiperda for 48 h. The caterpillars were used as prey by P. nigrispinus females. We evaluated the presence of Cry proteins, consumed prey biomass (predation), oviposition period, number of postures, number of eggs, number of eggs per posture, number of nymphs, egg viability, embryonic period, female longevity and development, and survival rates of immature. The results show that different Cry proteins move through the food chain of P. nigrispinus and provide evidence that the ingestion of three different proteins does not lead to unexpected synergistic effects. However, Cry toxins promoted histopathological changes in midgut cells of P. nigrispinus.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Status
Article CIMMYT Knowledge Center: John Woolston Library Reprints Collection Available
Total holds: 0

Peer review

Open Access

An important concern with the use of genetically modified (GM) plants expressing Bacillus thuringiensis (Bt) insecticidal toxins is the deleterious effect on non–target organisms. The predatory stink bug Podisus nigrispinus (Dallas) (Hemiptera: Pentatomidae) is used in biological control programs and may be exposed to Bt toxins. This study evaluated the indirect effects of different Cry proteins on P. nigrispinus with the prey Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera: Noctuidae), fed on simple or pyramided Bt maize genotypes. The experiment was carried out in a completely randomized design with three treatments: i) Isohybrid (not Bt), ii) Herculex® (transgenic maize encoding Cry1F protein) and iii) PowerCore® (pyramidal transgenic maize encoding the Cry1F, Cry1A.105, and Cry2Ab2 proteins), which were used to feed S. frugiperda for 48 h. The caterpillars were used as prey by P. nigrispinus females. We evaluated the presence of Cry proteins, consumed prey biomass (predation), oviposition period, number of postures, number of eggs, number of eggs per posture, number of nymphs, egg viability, embryonic period, female longevity and development, and survival rates of immature. The results show that different Cry proteins move through the food chain of P. nigrispinus and provide evidence that the ingestion of three different proteins does not lead to unexpected synergistic effects. However, Cry toxins promoted histopathological changes in midgut cells of P. nigrispinus.

Text in English

Click on an image to view it in the image viewer

Local cover image
Share

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org