Knowledge Center Catalog

Local cover image
Local cover image

Identification of saline soils with multiyear remote sensing of crop yields

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Madison, WI (USA) : Soil Science Society of America : Wiley, 2007.ISSN:
  • 0361-5995
  • 1435-0661 (Online)
Subject(s): Online resources: In: Soil Science Society of America Journal v. 71, no. 3, p. 777-783634724Summary: Soil salinity is an important constraint to agricultural sustainability, but accurate information on its variation across agricultural regions and its impact on regional crop productivity are difficult to obtain. We evaluated the relationships between remotely sensed wheat (Triticum aestivum L.) yields and salinity in an irrigation district in the Colorado River Delta region. The goals of this study were to: (i) document the relative importance of salinity as a constraint to regional wheat production; and (ii) develop techniques to accurately identify saline fields. Estimates of wheat yield from 6 yr of Landsat data agreed well with ground-based records on individual fields (R2 = 0.65). Salinity measurements on 122 randomly selected fields revealed that average 0- to 60-cm salinity levels >4 dS m1 reduced wheat yields, but the relative scarcity of such fields resulted in <1% regional yield loss attributable to salinity. Moreover, low yield was not a reliable indicator of high salinity, because many other factors contributed to yield variability in individual years; however, temporal analysis of yield images derived from remote sensing data showed that a significant fraction of fields exhibited consistently low yields during the 6-yr period. A subsequent survey of 60 additional fields, half of which were consistently low yielding, revealed that this targeted subset had significantly higher salinity at 30- to 60-cm depth than the control group (P = 0.02). These results suggest that consistently low yields are an indicator of high subsurface salinity, and that multiyear yield maps derived from remote sensing therefore hold promise for mapping salinity across agricultural regions.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Total holds: 0

Peer review

Peer-review: Yes - Open Access: Yes|http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0361-5995

Soil salinity is an important constraint to agricultural sustainability, but accurate information on its variation across agricultural regions and its impact on regional crop productivity are difficult to obtain. We evaluated the relationships between remotely sensed wheat (Triticum aestivum L.) yields and salinity in an irrigation district in the Colorado River Delta region. The goals of this study were to: (i) document the relative importance of salinity as a constraint to regional wheat production; and (ii) develop techniques to accurately identify saline fields. Estimates of wheat yield from 6 yr of Landsat data agreed well with ground-based records on individual fields (R2 = 0.65). Salinity measurements on 122 randomly selected fields revealed that average 0- to 60-cm salinity levels >4 dS m1 reduced wheat yields, but the relative scarcity of such fields resulted in <1% regional yield loss attributable to salinity. Moreover, low yield was not a reliable indicator of high salinity, because many other factors contributed to yield variability in individual years; however, temporal analysis of yield images derived from remote sensing data showed that a significant fraction of fields exhibited consistently low yields during the 6-yr period. A subsequent survey of 60 additional fields, half of which were consistently low yielding, revealed that this targeted subset had significantly higher salinity at 30- to 60-cm depth than the control group (P = 0.02). These results suggest that consistently low yields are an indicator of high subsurface salinity, and that multiyear yield maps derived from remote sensing therefore hold promise for mapping salinity across agricultural regions.

Conservation Agriculture Program

Text in English

INT1421

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org