Knowledge Center Catalog

Local cover image
Local cover image

Role of epicuticular wax in the regulation of plant growth and health as measured by spectral indices

By: Contributor(s): Material type: ArticleLanguage: English Publication details: United Kingdom : Taylor and Francis, 2021.ISSN:
  • 0143-1161
  • 1366-5901 (Online)
Subject(s): In: International Journal of Remote Sensing United Kingdom : Taylor and Francis, 2021. v. 42, no. 9, p. 3498-3510Summary: Using remote sensing technology for exploring the trait of interest can provide better results without damaging the plants and are comparatively economic. Traditional methods are available for quantification of different pigments and chemicals present in plants, yet these methods do not allow repeated measurements on the same plant throughout development. The reflected values from plant surfaces are a direct representation of plant physiology including plant morphological factors. The hyperspectral imaging indices for vegetation and water-stressed canopies provided a better indication of each genotype proficiency, thus improving their selection efficiency. The presence of epicuticular wax (EW) influences the reflectance from leaf surface which depends on the presence of leaf pigments including carotenoids, photosynthetic light use efficiency biochemical structures, and water content as they absorb the incident light necessary for photosynthesis. The results obtained suggested decrease carotenoid reflectance index (CRI) and photochemical reflectance index (PRI) values for high wax lines indicating the low concentration of stress-related pigments thus improving plant health and extended maturation. The high waxy lines decreased for plant senescence reflectance index (PSRI) and reduce canopy stress at grain filling and maturation growth stages. A positive correlation between high epicuticular wax (EW) and yield was found confirming previous study. A positive correlation between high epicuticular wax (EW) lines and yield indicated its important role in preventing yield losses under drought conditions.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Status
Article CIMMYT Knowledge Center: John Woolston Library Reprints Collection Available
Total holds: 0

Peer review

Using remote sensing technology for exploring the trait of interest can provide better results without damaging the plants and are comparatively economic. Traditional methods are available for quantification of different pigments and chemicals present in plants, yet these methods do not allow repeated measurements on the same plant throughout development. The reflected values from plant surfaces are a direct representation of plant physiology including plant morphological factors. The hyperspectral imaging indices for vegetation and water-stressed canopies provided a better indication of each genotype proficiency, thus improving their selection efficiency. The presence of epicuticular wax (EW) influences the reflectance from leaf surface which depends on the presence of leaf pigments including carotenoids, photosynthetic light use efficiency biochemical structures, and water content as they absorb the incident light necessary for photosynthesis. The results obtained suggested decrease carotenoid reflectance index (CRI) and photochemical reflectance index (PRI) values for high wax lines indicating the low concentration of stress-related pigments thus improving plant health and extended maturation. The high waxy lines decreased for plant senescence reflectance index (PSRI) and reduce canopy stress at grain filling and maturation growth stages. A positive correlation between high epicuticular wax (EW) and yield was found confirming previous study. A positive correlation between high epicuticular wax (EW) lines and yield indicated its important role in preventing yield losses under drought conditions.

The funding for this project was supported by the Agricultural innovation program (AIP) for Pakistan funded by the USAID, CIMMYT international Maize and Wheat Improvement Center and the University of California Davis.

Text in English

Click on an image to view it in the image viewer

Local cover image
Share

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org