Knowledge Center Catalog

Local cover image
Local cover image

Quantitative monitoring of leaf area index in wheat of different plant types by integrating NDVI and Beer-Lambert law

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: London (United Kingdom) : Nature Publishing Group, 2020.ISSN:
  • 2045-2322
Subject(s): Online resources: In: Nature Scientific Reports v. 10, art. 929Summary: Normalized difference vegetation index (NDVI) is one of the most important vegetation indices in crop remote sensing. It features a simple, fast, and non-destructive method and has been widely used in remote monitoring of crop growing status. Beer-Lambert law is widely used in calculating crop leaf area index (LAI), however, it is time-consuming detection and low in output. Our objective was to improve the accuracy of monitoring LAI through remote sensing by integrating NDVI and Beer-Lambert law. In this study, the Beer-Lambert law was firstly modified to construct a monitoring model with NDVI as the independent variable. Secondly, experimental data of wheat from different years and various plant types (erectophile, planophile and middle types) was used to validate the modified model. The results showed that at 130 DAS (days after sowing), the differences in NDVI, leaf area index (LAI) and extinction coefficient (k) of the three plant types with significantly different leaf orientation values (LOVs) reached the maximum. The NDVI of the planophile-type wheat reached saturation earlier than that of the middle and erectophile types. The undetermined parameters of the model (LAI = −ln (a1 × NDVI + b1)/(a2 × NDVI + b2)) were related to the plant type of wheat. For the erectophile-type cultivars (LOV ≥ 60°), the parameters for the modified model were, a1 = 0.306, a2 = −0.534, b1 = −0.065, and b2 = 0.541. For the middle-type cultivars (30° < LOV < 60°), the parameters were, a1 = 0.392, a2 = −0.881, b1 = 0.028, and b2 = 0.845. And for the planophile-type cultivars (LOV ≤ 30°), those parameters were, a1 = 0.596, a2 = −1.306, b1 = 0.014, and b2 = 1.130. Verification proved that the modified model based on integrating NDVI and Beer-Lambert law was better than Beer-Lambert law model only or NDVI-LAI direct model only. It was feasible to quantitatively monitor the LAI of different plant-type wheat by integrating NDVI and Beer-Lambert law, especially for erectophile-type wheat (R2 = 0.905, RMSE = 0.36, RE = 0.10). The monitoring model proposed in this study can accurately reflect the dynamic changes of plant canopy structure parameters, and provides a novel method for determining plant LAI.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library Reprints Collection Available
Total holds: 0

Peer review

Open Access

Normalized difference vegetation index (NDVI) is one of the most important vegetation indices in crop remote sensing. It features a simple, fast, and non-destructive method and has been widely used in remote monitoring of crop growing status. Beer-Lambert law is widely used in calculating crop leaf area index (LAI), however, it is time-consuming detection and low in output. Our objective was to improve the accuracy of monitoring LAI through remote sensing by integrating NDVI and Beer-Lambert law. In this study, the Beer-Lambert law was firstly modified to construct a monitoring model with NDVI as the independent variable. Secondly, experimental data of wheat from different years and various plant types (erectophile, planophile and middle types) was used to validate the modified model. The results showed that at 130 DAS (days after sowing), the differences in NDVI, leaf area index (LAI) and extinction coefficient (k) of the three plant types with significantly different leaf orientation values (LOVs) reached the maximum. The NDVI of the planophile-type wheat reached saturation earlier than that of the middle and erectophile types. The undetermined parameters of the model (LAI = −ln (a1 × NDVI + b1)/(a2 × NDVI + b2)) were related to the plant type of wheat. For the erectophile-type cultivars (LOV ≥ 60°), the parameters for the modified model were, a1 = 0.306, a2 = −0.534, b1 = −0.065, and b2 = 0.541. For the middle-type cultivars (30° < LOV < 60°), the parameters were, a1 = 0.392, a2 = −0.881, b1 = 0.028, and b2 = 0.845. And for the planophile-type cultivars (LOV ≤ 30°), those parameters were, a1 = 0.596, a2 = −1.306, b1 = 0.014, and b2 = 1.130. Verification proved that the modified model based on integrating NDVI and Beer-Lambert law was better than Beer-Lambert law model only or NDVI-LAI direct model only. It was feasible to quantitatively monitor the LAI of different plant-type wheat by integrating NDVI and Beer-Lambert law, especially for erectophile-type wheat (R2 = 0.905, RMSE = 0.36, RE = 0.10). The monitoring model proposed in this study can accurately reflect the dynamic changes of plant canopy structure parameters, and provides a novel method for determining plant LAI.

Text in English

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org