TY - JA AU - Vonk,W.J. AU - Hijbeek,R. AU - Glendining,M.J. AU - Powlson,D.S. AU - Bhogal,A. AU - Merbach,I. AU - Silva,J.V. AU - Poffenbarger,H.J. AU - Dhillon,J. AU - Sieling,K. AU - Berge,H.F.M.ten TI - The legacy effect of synthetic N fertiliser SN - 1351-0754 PY - 2022/// CY - United Kingdom PB - Wiley-Blackwell Publishing Ltd, KW - Cereals KW - AGROVOC KW - Fertilizer application KW - Nitrogen KW - Stubble KW - Topsoil KW - Wheat KW - Long term experiments N1 - Peer review; Open Access N2 - Cumulative crop recovery of synthetic fertiliser nitrogen (N) over several cropping seasons (legacy effect) generally receives limited attention. The increment in crop N uptake after the first-season uptake from fertiliser can be expressed as a fraction (∆RE) of the annual N application rate. This study aims to quantify ∆RE using data from nine long-term experiments (LTEs). As such, ∆RE is the difference between first season (RE1st) and long-term (RELT) recovery of synthetic fertiliser N. In this study, RE1st was assessed either by the 15N isotope method or by a zero-N subplot freshly superimposed on a long-term fertilised LTE treatment plot. RELT was calculated by comparing N uptake in the total aboveground crop biomass between a long-term fertilised and long-term control (zero-N) treatment. Using a mixed linear effect model, the effects of climate, crop type, experiment duration, average N rate, and soil clay content on ∆RE were evaluated. Because the experimental setup required for the calculation of ∆RE is relatively rare, only nine suitable LTEs were found. Across these nine LTEs in Europe and North America, the mean ∆RE was 24.4% (±12.0%, 95% CI) of annual N application, with higher values for winter wheat than for maize. This result shows that fertiliser-N retained in the soil and stubble may contribute substantially to crop N uptake in subsequent years. Our results suggest that an initial recovery of 43.8% (±11%, 95% CI) of N application may increase to around 66.0% (±15%, 95% CI) on average over time. Furthermore, we found that ∆RE was not clearly related to long-term changes in topsoil total N stock. Our findings show that the—often used—first-year recovery of synthetic fertiliser N application does not express the full effect of fertiliser application on crop nutrition. The fertiliser contribution to soil N supply should be accounted for when exploring future scenarios on N cycling, including crop N requirements and N balance schemes UR - https://hdl.handle.net/10883/22128 DO - https://doi.org/10.1111/ejss.13238 T2 - European Journal of Soil Science ER -