TY - JA AU - JULIANA P. AU - Poland,J.A. AU - Huerta-Espino,J. AU - Shrestha,S. AU - Crossa,J. AU - Crespo-Herrera,L.A. AU - Toledo,F.H. AU - Velu,G. AU - Mondal,S. AU - Kumar,U. AU - Bhavani,S. AU - Pawan Kumar Singh AU - Randhawa,M.S. AU - Xinyao He AU - Guzman,C. AU - Dreisigacker,S. AU - Rouse,M.N. AU - Yue Jin AU - Perez-Rodriguez,P. AU - Montesinos-Lopez,O.A. AU - Singh,D. AU - Rahman,M.M. AU - Marza, F. AU - Singh,R.P. TI - Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics SN - 1546-1718 PY - 2019/// CY - United Kingdom PB - Nature Publishing Group KW - Plant breeding KW - AGROVOC KW - Marker-assisted selection KW - Soft wheat KW - Genomics N1 - Peer review; WC; FP3 N2 - Bread wheat improvement using genomic tools is essential for accelerating trait genetic gains. Here we report the genomic predictabilities of 35 key traits and demonstrate the potential of genomic selection for wheat end-use quality. We also performed a large genome-wide association study that identified several significant marker-trait associations for 50 traits evaluated in South Asia, Africa and the Americas. Furthermore, we built a reference wheat genotype-phenotype map, explored allele frequency dynamics over time and fingerprinted 44,624 wheat lines for trait-associated markers, generating over 7.6 million data points, which together will provide a valuable resource to the wheat community for enhancing productivity and stress resilience T2 - Nature genetics DO - https://doi.org/10.1038/s41588-019-0496-6 ER -