TY - JA AU - Rutkoski,J. AU - Singh,R.P. AU - Huerta-Espino,J. AU - Bhavani,S. AU - Poland,J.A. AU - Jannink,J.L. AU - Sorrells,M.E. TI - Genetic gain from phenotypic and genomic selection for quantitative resistance to stem rust of wheat SN - 1940-3372 PY - 2015/// CY - USA : PB - CSSA KW - Genetic gain KW - AGROVOC KW - Wheat KW - Genomics N1 - Open Access; Peer review N2 - Stem rust of wheat (Triticum aestivum L.) caused by Puccinia graminis f. sp. tritici Eriks. and E. Henn. is a globally important disease that can cause severe yield loss. Breeding for quantitative stem rust resistance (QSRR) is important for developing cultivars with durable resistance. Genomic selection (GS) could increase rates of genetic gain for quantitative traits, but few experiments comparing GS and phenotypic selection (PS) have been conducted. Our objectives were to (i) compare realized gain from GS based on markers only with that of PS for QSRR in spring wheat using equal selection intensities; (ii) determine if gains agree with theoretical expectations; and (iii) compare the impact of GS and PS on inbreeding, genetic variance, and correlated response for pseudo-black chaff (PBC), a correlated trait. Over 2 yr, two cycles of GS were performed in parallel with one cycle of PS, with each method replicated twice. For GS, markers were generated using genotyping-by-sequencing, the prediction model was initially trained using historical data, and the model was updated before the second GS cycle. Overall, GS and PS led to a 31  11 and 42  12% increase in QSRR and a 138  22 and 180  70% increase in PBC, respectively. Genetic gains were not significant but were in agreement with expectations. Per year, gains from GS and PS were equal, but GS led to significantly lower genetic variance. This shows that while GS and PS can lead to equal rates of short-term gains, GS can reduce genetic variance more rapidly. Further work to develop efficient GS implementation strategies in spring wheat is warranted UR - http://hdl.handle.net/10883/16829 T2 - The Plant Genome DO - https://doi.org/10.3835/plantgenome2014.10.0074 ER -