New technologies for phenotyping
Material type: TextLanguage: En Publication details: Springer : 2015Description: p. 1-14ISBN:- 978-3-319-13676-9
Item type | Current library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Reprint | CIMMYT Knowledge Center: John Woolston Library | CIMMYT Staff Publications Collection | Available |
Reference only
Improvements in agronomical practices and crop breeding are paramount responses to the present and future challenges imposed by water stress and heat (Lobell et al. 2011a, b; Cairns et al. 2013; Hawkins et al. 2013). On what concerns breeding, constraints in field phenotyping capability currently limit our ability to dissect the genetics of quantitative traits, especially those related to yield and water stress tolerance. Progress in sensors, aeronautics and high-performance computing is paving the way. Field high throughput platforms will combine non-invasive remote-sensing methods, together with automated environmental data collection. In addition, laboratory analyses of key plant parts may complement direct phenotyping under field conditions (Araus and Cairns 2014). Moreover, these phenotyping techniques may also help to cope with spatial variability inherent to phenotyping in the field.
Global Maize Program
English
CIMMYT Informa 2015|Springer
Carelia Juarez
I1705364|INT2948
CIMMYT Staff Publications Collection