Knowledge Center Catalog

Local cover image
Local cover image

Genomic tools and strategies for breeding climate resilient cereals

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Berlin (Germany) : Springer, 2013.ISBN:
  • 978-3-642-37044-1
  • 978-3-642-37045-8 (Online)
Subject(s): In: Genomics and Breeding for Climate-Resilient Crops: vol. 1 Concepts and strategies p. 213-239Summary: Cereal crops are vital for meeting the food, feed and nutritional demands of the world. However, long-term production growth of cereals could be severely affected by the changing climate, which is already exacerbating existing challenges such as drought and heat stresses, insect pests and diseases, and soil degradation, especially in the tropics. While adaptation to climate change would require convergence of appropriate technologies, policies and institutional innovations, the focus of this chapter is on some of the promising genomic tools and strategies that can enhance time- and cost-effectiveness of breeding for climate-resilient cereals. For this, we use maize as a case study, considering the availability of genomic resources, the significance of maize as the number one cereal crop in the world at present in terms of total area and production, the vulnerability of sub-Saharan Africa (where maize is the most important staple food crop) and South Asia (where maize plays a significant role as food and feed) to the changing climates. CIMMYT?s experiences and initiatives with regard to designing and implementing modern breeding strategies for developing climate-resilient maize varieties, including high-density genotyping, whole genome resequencing, high-throughput and precise phenotyping, doubled haploids (DH), genomics-assisted breeding (e.g., genome-wide association studies, breeder-ready marker development, rapid-cycle genomic selection, marker-assisted recurrent selection), and crop modeling are particularly highlighted here. The key challenges to the international scientific community are (a) to generate high-quality phenotypic data in breeding programs, and integrating the same with modern tools and technologies for accelerated development of climate-resilient germplasm; (b) to better understand the effects of climate change on diversity of cropping systems in different regions; and (c) to effectively monitor the patterns of change both temporally and spatially, coupled with appropriate policies and actions at the farm level.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Reprint CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection CIS-7461 (Browse shelf(Opens below)) Available
Total holds: 0

Cereal crops are vital for meeting the food, feed and nutritional demands of the world. However, long-term production growth of cereals could be severely affected by the changing climate, which is already exacerbating existing challenges such as drought and heat stresses, insect pests and diseases, and soil degradation, especially in the tropics. While adaptation to climate change would require convergence of appropriate technologies, policies and institutional innovations, the focus of this chapter is on some of the promising genomic tools and strategies that can enhance time- and cost-effectiveness of breeding for climate-resilient cereals. For this, we use maize as a case study, considering the availability of genomic resources, the significance of maize as the number one cereal crop in the world at present in terms of total area and production, the vulnerability of sub-Saharan Africa (where maize is the most important staple food crop) and South Asia (where maize plays a significant role as food and feed) to the changing climates. CIMMYT?s experiences and initiatives with regard to designing and implementing modern breeding strategies for developing climate-resilient maize varieties, including high-density genotyping, whole genome resequencing, high-throughput and precise phenotyping, doubled haploids (DH), genomics-assisted breeding (e.g., genome-wide association studies, breeder-ready marker development, rapid-cycle genomic selection, marker-assisted recurrent selection), and crop modeling are particularly highlighted here. The key challenges to the international scientific community are (a) to generate high-quality phenotypic data in breeding programs, and integrating the same with modern tools and technologies for accelerated development of climate-resilient germplasm; (b) to better understand the effects of climate change on diversity of cropping systems in different regions; and (c) to effectively monitor the patterns of change both temporally and spatially, coupled with appropriate policies and actions at the farm level.

Global Maize Program

Text in English

INT3057|INT2948|INT2735

CIMMYT Staff Publications Collection

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org