Normal view MARC view ISBD view

Small-holder adoption of conservation agriculture in Lesotho and Mozambique

By: Eash, N.
Contributor(s): Lambert, D.M [coaut.] | Marake, M [coaut.] | Walker, F.R [coaut.] | Wilcox, M.D [coaut.] | Thierfelder, C [coaut.].
Material type: materialTypeLabelBookAnalytics: Show analyticsPublisher: 2012Description: 28 pages.Subject(s): Lesotho | Mozambique | Risk | Yield | Conservation agricultureSummary: Conservation Agriculture (CA) has been practiced for three decades and is extensively adopted by large scale commercial farmers in the Americas and Australia and to a much lower extent by small-scale farmers around the world. In 2008 there were about 106 million hectares of permanent crops grown using CA systems in 2008. Conservation agriculture typically involves: (1) minimal soil disturbance; (2) covering soils with crop residues; and (3) rotating crops or intercropping with legumes (FAO, 2002; Thierfelder and Wall, 2010). Interventions such as mechanical tillage are reduced to an absolute minimum, and the use of agrochemicals and nutrients of mineral or organic origin are applied at optimal levels. The interactions between minimal soil disturbance, managing crop residues on fields, applying optimal nutrient levels, and controlling weed populations are often considered more consequential than the individual effects of these management activities. Instead of maximizing crop yield, the managerial objectives implied by CA is to optimize long-term soil fertility improvements through residue management and cover crop rotations, with higher maize yields and potentially lower input cost side-benefits. Agronomic research has documented that CA systems are more likely to generate higher maize yields than non-CA systems. However, even increases in expected biological yields may not be enough to encourage risk-averse small-holder farmers to adopt CA technologies. This research summarizes field trial information from Mozambique and Lesotho to understand the interplay between (1) optimal seeding and fertilizer input rates, and (2) and input and commodity prices to timate the risk premium associated with conservation agriculture technology. Findings suggest that farm size (as measured by household wealth) plays a significant role in determining the amount producers would be willing to pay to eliminate risk associated with adoption of an alternative technology like conservation agriculture.Collection: CIMMYT Staff Publications Collection
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Book CIMMYT Knowledge Center: John Woolston Library

Lic. Jose Juan Caballero Flores

 

CIMMYT Staff Publications Collection CIS-6656 (Browse shelf) Available
Total holds: 0

Conservation Agriculture (CA) has been practiced for three decades and is extensively adopted by large scale commercial farmers in the Americas and Australia and to a much lower extent by small-scale farmers around the world. In 2008 there were about 106 million hectares of permanent crops grown using CA systems in 2008. Conservation agriculture typically involves: (1) minimal soil disturbance; (2) covering soils with crop residues; and (3) rotating crops or intercropping with legumes (FAO, 2002; Thierfelder and Wall, 2010). Interventions such as mechanical tillage are reduced to an absolute minimum, and the use of agrochemicals and nutrients of mineral or organic origin are applied at optimal levels. The interactions between minimal soil disturbance, managing crop residues on fields, applying optimal nutrient levels, and controlling weed populations are often considered more consequential than the individual effects of these management activities. Instead of maximizing crop yield, the managerial objectives implied by CA is to optimize long-term soil fertility improvements through residue management and cover crop rotations, with higher maize yields and potentially lower input cost side-benefits. Agronomic research has documented that CA systems are more likely to generate higher maize yields than non-CA systems. However, even increases in expected biological yields may not be enough to encourage risk-averse small-holder farmers to adopt CA technologies. This research summarizes field trial information from Mozambique and Lesotho to understand the interplay between (1) optimal seeding and fertilizer input rates, and (2) and input and commodity prices to timate the risk premium associated with conservation agriculture technology. Findings suggest that farm size (as measured by household wealth) plays a significant role in determining the amount producers would be willing to pay to eliminate risk associated with adoption of an alternative technology like conservation agriculture.

Conservation Agriculture Program

English

Lucia Segura

INT2939

CIMMYT Staff Publications Collection

There are no comments for this item.

Log in to your account to post a comment.
baner

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Monday –Friday 9:00 am. 17:00 pm. If you have any question, please contact us at CIMMYT-Knowledge-Center@cgiar.org

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) © Copyright 2015. Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
Lunes –Viernes 9:00 am. 17:00 pm. Si tiene cualquier pregunta, contáctenos a CIMMYT-Knowledge-Center@cgiar.org