Knowledge Center Catalog

Local cover image
Local cover image

Chapter 10. How conservation agriculture can contribute to buffering climate change

By: Contributor(s): Material type: ArticleArticleLanguage: English Series: CABI Climate Change ; v.1Publication details: Oxfordshire (United Kingdom) : CABI, 2010.ISBN:
  • 978-1-84593-633-4
Subject(s): In: Climate change & crop production p. 177-199Summary: Agriculture contributes significantly to greenhouse gas (GHG) emissions: CO2, CH4 and N2O. Promoting agricultural practices that mitigate climate change by reducing GHG emissions is important; but those same practices also have to improve farmer production and income and buffer the production system against changes in climate. New agricultural practices also need to prevent further soil degradation and improve system resilience. Conservation agriculture (CA), based on minimal soil disturbance, permanent ground cover and crop rotations is a management system that achieves these goals; it results in improved soil physical and biological health, better nutrient cycling and crop growth. CA also increases water infiltration and soil penetration by roots, which allows crops to better adapt to lower rainfall and make better use of irrigation water. Water and wind erosion are also reduced by CA since the soil surface is protected and water runoff is lowered as more water enters the soil profile. CA can also help to mitigate climate change. Growing rice with less water and adopting CA practices results in less CH4 emissions. However, care has to be taken with fertilizer management to minimize N2O emissions that can increase under resulting aerobic conditions. CA can also substantially reduce CO2 emissions through reduced diesel use and increased sequestration of C in the soil. This chapter recommends that an integrated research and participatory extension is needed to fine tune CA to specific locations to convince farmers to adopt this technology.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Book part CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection CIS-6055 (Browse shelf(Opens below)) Available
Total holds: 0

Agriculture contributes significantly to greenhouse gas (GHG) emissions: CO2, CH4 and N2O. Promoting agricultural practices that mitigate climate change by reducing GHG emissions is important; but those same practices also have to improve farmer production and income and buffer the production system against changes in climate. New agricultural practices also need to prevent further soil degradation and improve system resilience. Conservation agriculture (CA), based on minimal soil disturbance, permanent ground cover and crop rotations is a management system that achieves these goals; it results in improved soil physical and biological health, better nutrient cycling and crop growth. CA also increases water infiltration and soil penetration by roots, which allows crops to better adapt to lower rainfall and make better use of irrigation water. Water and wind erosion are also reduced by CA since the soil surface is protected and water runoff is lowered as more water enters the soil profile. CA can also help to mitigate climate change. Growing rice with less water and adopting CA practices results in less CH4 emissions. However, care has to be taken with fertilizer management to minimize N2O emissions that can increase under resulting aerobic conditions. CA can also substantially reduce CO2 emissions through reduced diesel use and increased sequestration of C in the soil. This chapter recommends that an integrated research and participatory extension is needed to fine tune CA to specific locations to convince farmers to adopt this technology.

Conservation Agriculture Program

Text in English

INT2813

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org