Knowledge Center Catalog

Local cover image
Local cover image

Molecular analyses of a dehydration related gene from the DREB family in durum, wheat and triticale

By: Contributor(s): Material type: ArticleLanguage: English Publication details: Berlin (Germany) : Birkhauser Verlag AG, 2008.ISBN:
  • 978-3-7643-8553-8
  • 978-3-7643-8554-5 (Online)
Subject(s): In: Biosaline agriculture and high salinity tolerance Berlin (Germany) : Birkhauser Verlag AG, 2008. p. 287-295Summary: Abiotic stresses are the primary cause of crop loss worldwide. They result in average yield losses of more than 50% in major crops. The negative effects of abiotic stresses are thought to be increasing due to global climate change and the resulting erratic weather patterns. Improving crops’ ability to tolerate abiotic stresses through conventional breeding has been successful, especially in the case of wheat, as new cultivars better adapting to increasingly difficult growing conditions are being released regularly. However, as many stress-inducible genes have been identified, sequenced, characterized and insights into their functional roles in stress tolerance are being obtained, breeding programs have much to gain by exploring ways to target those stress-related genes that may be useful in their selection. If, or when, the relationship between different alleles or expression patterns of some stress-related genes is demonstrated, perfect markers for assisting breeder in selection for stress-tolerant lines can be readily obtained. Previously, we isolated and characterized the gene designated as TdDRF1 encoding for a dehydration responsive factor in durum wheat. Results obtained using plant samples of different cultivars in time-course experiments conducted in the greenhouse suggested that the expression profile of TdDRF1 upon water stress was genotype dependent. In the present paper we report results from field experiments carried at CIMMYT’s experimental fields near Obregon in Mexico, in which quantitative RT-PCR was used to monitor the expression profile of the three transcripts produced by the TdDRF1 gene under stressed (minimally irrigated) and non-stressed (fully irrigated) conditions. Tolerant and susceptible cultivars were analyzed and the results from these field experiments are compared with those from greenhouse testing.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status
Book part CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection CIS-5541 (Browse shelf(Opens below)) Available
Total holds: 0

Abiotic stresses are the primary cause of crop loss worldwide. They result in average yield losses of more than 50% in major crops. The negative effects of abiotic stresses are thought to be increasing due to global climate change and the resulting erratic weather patterns. Improving crops’ ability to tolerate abiotic stresses through conventional breeding has been successful, especially in the case of wheat, as new cultivars better adapting to increasingly difficult growing conditions are being released regularly. However, as many stress-inducible genes have been identified, sequenced, characterized and insights into their functional roles in stress tolerance are being obtained, breeding programs have much to gain by exploring ways to target those stress-related genes that may be useful in their selection. If, or when, the relationship between different alleles or expression patterns of some stress-related genes is demonstrated, perfect markers for assisting breeder in selection for stress-tolerant lines can be readily obtained. Previously, we isolated and characterized the gene designated as TdDRF1 encoding for a dehydration responsive factor in durum wheat. Results obtained using plant samples of different cultivars in time-course experiments conducted in the greenhouse suggested that the expression profile of TdDRF1 upon water stress was genotype dependent. In the present paper we report results from field experiments carried at CIMMYT’s experimental fields near Obregon in Mexico, in which quantitative RT-PCR was used to monitor the expression profile of the three transcripts produced by the TdDRF1 gene under stressed (minimally irrigated) and non-stressed (fully irrigated) conditions. Tolerant and susceptible cultivars were analyzed and the results from these field experiments are compared with those from greenhouse testing.

Global Wheat Program

Text in English

INT2585

Click on an image to view it in the image viewer

Local cover image
Share

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org