Knowledge Center Catalog

Local cover image
Local cover image

Prediction of Australian wheat genotype by environment interactions and mega-environments

By: Contributor(s): Material type: ArticleLanguage: English Publication details: Germany : Springer, 2025.ISSN:
  • 0040-5752
  • 1432-2242 (Online)
Subject(s): Online resources: In: Theoretical and Applied Genetics Germany : Springer, 2025. v. 138, art. 241Summary: Wheat is grown across a diverse range of environments in Australia with contrasting environmental constraints. Targeted breeding to optimise genotypes in target environments is hindered by large and ubiquitous genotype by environment interactions (GEI). Common GEI in multi-environment trial experiments, which sample the target population of environments, can be efficiently modelled using latent environmental effects from factor analytic mixed models. However, generalised prediction into the full target population of environments is difficult without a clear link to observed environmental covariates (ECs) that are defined from high-resolution weather and soil data. Here, we used a large wheat multi-environment trial dataset and demonstrated that latent environmental effects can be associated with and predicted from observed ECs. We found GEI-based environment classes could be defined by combinations of key ECs. Prediction of main and latent effects in a wider set of environments covering the full TPE across the Australian grain belt over 13 years revealed the complex trends of environmental effects and GEI over regional scales demonstrating high year-to-year variability. Regional environment types often shifted year-to-year. Cross-validation of forward genomic prediction into untested year environments demonstrated that increased accuracy is possible if estimated genetic effects are also accurate and ECs of new environments are known. These findings may guide Australian wheat breeders to better target specifically adapted material to mega-environments defined by static GEI while also considering broad adaptability and non-static GEI resulting from year-to-year variability.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Status
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

Wheat is grown across a diverse range of environments in Australia with contrasting environmental constraints. Targeted breeding to optimise genotypes in target environments is hindered by large and ubiquitous genotype by environment interactions (GEI). Common GEI in multi-environment trial experiments, which sample the target population of environments, can be efficiently modelled using latent environmental effects from factor analytic mixed models. However, generalised prediction into the full target population of environments is difficult without a clear link to observed environmental covariates (ECs) that are defined from high-resolution weather and soil data. Here, we used a large wheat multi-environment trial dataset and demonstrated that latent environmental effects can be associated with and predicted from observed ECs. We found GEI-based environment classes could be defined by combinations of key ECs. Prediction of main and latent effects in a wider set of environments covering the full TPE across the Australian grain belt over 13 years revealed the complex trends of environmental effects and GEI over regional scales demonstrating high year-to-year variability. Regional environment types often shifted year-to-year. Cross-validation of forward genomic prediction into untested year environments demonstrated that increased accuracy is possible if estimated genetic effects are also accurate and ECs of new environments are known. These findings may guide Australian wheat breeders to better target specifically adapted material to mega-environments defined by static GEI while also considering broad adaptability and non-static GEI resulting from year-to-year variability.

Text in English

Fradgley, N. S. : No CIMMYT Affiliation

Breeding for Tomorrow Commonwealth Scientific and Industrial Research (CSIRO) Grains Research and Development Corporation (GRDC) CGIAR Trust Fund

https://hdl.handle.net/10568/179262

Click on an image to view it in the image viewer

Local cover image
Share

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org