Knowledge Center Catalog

Local cover image
Local cover image

Plasticity and adaptive architecture of roots for enhanced salinity tolerance in crops

By: Contributor(s): Material type: ArticleLanguage: English Publication details: United States of America : Elsevier Inc, 2026.ISSN:
  • 0734-9750
  • 1873-1899 (Online)
Subject(s): In: Biotechnology Advances United States of America : Elsevier Inc., 2026. v. 87, art. 108773Summary: Soil salinization poses a major challenge to global food security, affecting over one billion hectares of arable land and severely constraining crop productivity. As the primary interface between plants and soil, roots play a pivotal role in sensing and adapting to salinity stress through remarkable structural and functional plasticity. This review integrates recent advances in root system architecture (RSA) dynamics, suberin biosynthesis, hormonal regulation, and microbiome interactions to elucidate how plants achieve salinity resilience. We discuss key genes and regulatory modules controlling primary root elongation, lateral root patterning, and barrier formation, emphasizing transcriptional networks involving MYB, NAC, and WRKY families and their coordination with ABA, auxin, and ethylene signaling. Special attention is given to the biosynthesis and deposition of suberin as a dynamic ion-selective barrier governed by hormonal crosstalk and lipid metabolism. We further highlight how beneficial microbes such as Azospirillum, Bacillus, and arbuscular mycorrhizal fungi enhance salt tolerance by modulating phytohormones, antioxidant systems, and ionic homeostasis. Integrating multi-omics and CRISPR-based tools with microbiome engineering offers new avenues to design salt-resilient root ideotypes. We propose a conceptual framework linking molecular regulation, hormonal dynamics, and rhizosphere ecology to root system plasticity, providing a blueprint for engineering next-generation crops capable of maintaining growth and productivity in saline environments.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Status
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Soil salinization poses a major challenge to global food security, affecting over one billion hectares of arable land and severely constraining crop productivity. As the primary interface between plants and soil, roots play a pivotal role in sensing and adapting to salinity stress through remarkable structural and functional plasticity. This review integrates recent advances in root system architecture (RSA) dynamics, suberin biosynthesis, hormonal regulation, and microbiome interactions to elucidate how plants achieve salinity resilience. We discuss key genes and regulatory modules controlling primary root elongation, lateral root patterning, and barrier formation, emphasizing transcriptional networks involving MYB, NAC, and WRKY families and their coordination with ABA, auxin, and ethylene signaling. Special attention is given to the biosynthesis and deposition of suberin as a dynamic ion-selective barrier governed by hormonal crosstalk and lipid metabolism. We further highlight how beneficial microbes such as Azospirillum, Bacillus, and arbuscular mycorrhizal fungi enhance salt tolerance by modulating phytohormones, antioxidant systems, and ionic homeostasis. Integrating multi-omics and CRISPR-based tools with microbiome engineering offers new avenues to design salt-resilient root ideotypes. We propose a conceptual framework linking molecular regulation, hormonal dynamics, and rhizosphere ecology to root system plasticity, providing a blueprint for engineering next-generation crops capable of maintaining growth and productivity in saline environments.

Text in English

Faheem Tariq : Not in IRS staff list but CIMMYT Affiliation

Linmao Zhao : Not in IRS staff list but CIMMYT Affiliation

Chenglai Wu : Not in IRS staff list but CIMMYT Affiliation

Click on an image to view it in the image viewer

Local cover image
Share

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org