Entomopathogenic nematodes and bioactive compounds of their bacterial endosymbionts act synergistically in combination with spinosad to kill Phthorimaea operculella (Zeller, 1873) (Lepidoptera : Gelechiidae), a serious threat to food security
Material type:
ArticleLanguage: English Publication details: Basel (Switzerland) : MDPI, 2025.ISSN: - 2076-2607 (Online)
| Item type | Current library | Collection | Status | |
|---|---|---|---|---|
| Article | CIMMYT Knowledge Center: John Woolston Library | CIMMYT Staff Publications Collection | Available |
Peer review
Open Access
As a staple food, potato (Solanum tuberosum L.) (Solanaceae) is one of the most produced food crops to ensure food security. The potato tuber moth (PTM), Phthorimaea operculella (Zeller, 1873) (Lepidoptera: Gelechiidae), is a major pest of potato, damaging both the growing and storage processes. In recent years, green pest control strategies have been gaining importance to reduce the adverse effects of chemicals and protect the environment. Entomopathogenic nematodes (EPNs) and their bacterial endosymbionts (Xenorhabdus and Photorhabdus spp.) have been one of the top topics studied in sustainable pest control approaches. In the present study, the two most common EPN species, Steinernema feltiae and Heterorhabditis bacteriophora, and their bacterial associates, Xenorhabdus bovienii and Photorhabdus luminescens subsp. kayaii were evaluated against PTM larvae separately and in combination with spinosad. The survival rates of infective juveniles (IJs) of EPNs were over 92% after 72 h of direct exposure to spinosad. Co-application of EPNs and bioactive compounds (BACs) of endosymbiotic bacteria with spinosad induced synergistic interactions and achieved the maximum mortality (100%) in PTM larvae 48 h post-treatment. Spinosad and BAC combinations were highly efficient in controlling the PTM larvae and provided LT50 values below 23.0 h. Gas chromatography mass spectrometry (GC-MS) analysis identified 29 compounds in total, 20 of which belonged to P. luminescens subsp. kayaii. The results indicate that the integration of EPNs and BACs of endosymbiotic bacteria with spinosad presents a synergistic interaction and enhances pest control efficacy.
Text in English
Erciyes University Scientific Research Projects Coordination Unit