Knowledge Center Catalog

Local cover image
Local cover image

Boosting genomic prediction transferability with sparse testing

By: Contributor(s): Material type: ArticleLanguage: English Publication details: Basel (Switzerland) : MDPI, 2025.ISSN:
  • 2073-4425 (Online)
Subject(s): Online resources: In: Genes Basel (Switzerland) : MDPI, 2025. v. 16, no. 7, art. 827Summary: Background/Objectives: Improving sparse testing is essential for enhancing the efficiency of genomic prediction (GP). Accordingly, new strategies are being explored to refine genomic selection (GS) methods under sparse testing conditions. Methods: In this study, a sparse testing approach was evaluated, specifically in the context of predicting performance for tested lines in untested environments. Sparse testing is particularly practical in large-scale breeding programs because it reduces the cost and logistical burden of evaluating every genotype in every environment, while still enabling accurate prediction through strategic data use. To achieve this, we used training data from CIMMYT (Obregon, Mexico), along with partial data from India, to predict line performance in India using observations from Mexico. Results: Our results show that incorporating data from Obregon into the training set improved prediction accuracy, with greater effectiveness when the data were temporally closer. Across environments, Pearson’s correlation improved by at least 219% (in a testing proportion of 50%), while gains in the percentage of matching in top 10% and 20% of top lines were 18.42% and 20.79%, respectively (also in a testing proportion of 50%). Conclusions: These findings emphasize that enriching training data with relevant, temporally proximate information is key to enhancing genomic prediction performance; conversely, incorporating unrelated data can reduce prediction accuracy.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Status
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

Background/Objectives: Improving sparse testing is essential for enhancing the efficiency of genomic prediction (GP). Accordingly, new strategies are being explored to refine genomic selection (GS) methods under sparse testing conditions. Methods: In this study, a sparse testing approach was evaluated, specifically in the context of predicting performance for tested lines in untested environments. Sparse testing is particularly practical in large-scale breeding programs because it reduces the cost and logistical burden of evaluating every genotype in every environment, while still enabling accurate prediction through strategic data use. To achieve this, we used training data from CIMMYT (Obregon, Mexico), along with partial data from India, to predict line performance in India using observations from Mexico. Results: Our results show that incorporating data from Obregon into the training set improved prediction accuracy, with greater effectiveness when the data were temporally closer. Across environments, Pearson’s correlation improved by at least 219% (in a testing proportion of 50%), while gains in the percentage of matching in top 10% and 20% of top lines were 18.42% and 20.79%, respectively (also in a testing proportion of 50%). Conclusions: These findings emphasize that enriching training data with relevant, temporally proximate information is key to enhancing genomic prediction performance; conversely, incorporating unrelated data can reduce prediction accuracy.

Text in English

Montesinos-Lopez, O.A. : No CIMMYT Affiliation

Accelerated Breeding Bill & Melinda Gates Foundation (BMGF) Foreign, Commonwealth & Development Office (FCDO) Accelerating Genetic Gains in Maize and Wheat (AGG) United States Agency for International Development (USAID) Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) CGIAR Trust Fund Breeding for Tomorrow

https://hdl.handle.net/10568/176261

Click on an image to view it in the image viewer

Local cover image
Share

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org