Knowledge Center Catalog

Local cover image
Local cover image

QTL mapping for leaf rust resistance in a recombinant inbred line population from the cross of wheat cultivars Zhongmai 578/Jimai 22

By: Contributor(s): Material type: ArticleLanguage: English Publication details: United Kingdom : BioMed Central Ltd., 2025.ISSN:
  • 2096-5362
Subject(s): Online resources: In: Phytopathology Research United Kingdom : BioMed Central Ltd., 2025. v. 7, no. 1, art. 57Summary: Leaf rust is a highly destructive disease that poses a significant threat to both the yield and quality of wheat. Identification of genetic loci can aid in enhancing leaf rust resistance in wheat breeding. In the present study, 262 recombinant inbred lines derived from a cross between Zhongmai 578 and Jimai 22 were used to map leaf rust resistance loci using the Wheat 50K single-nucleotide polymorphism (SNP) array across four environments. Four quantitative trait loci (QTL) on chromosomes 2B (2), 5B, and 7B were identified through composite interval mapping, designated QLr.caas-2B.1, QLr.caas-2B.2, QLr.caas-5B, and QLr.caas-7B, respectively, explaining 3.7%-19.6% of the phenotypic variances. The resistance alleles at QLr.caas-2B.1, QLr.caas-5B, and QLr.caas-7B originated from Zhongmai 578, while that at QLr.caas-2B.2 came from Jimai 22. Both QLr.caas-2B.2 and QLr.caas-5B overlapped with loci previously reported, whereas QLr.caas-2B.1 and QLr.caas-7B are likely to be new loci. Two kompetitive allele-specific PCR (KASP) markers, KASP-QLr.caas-2B.2 and KASP-QLr.caas-5B, were proven to be significantly associated with leaf rust resistance in a diverse panel of 119 wheat varieties mainly from China. Four candidate genes encoding a lectin-receptor kinase protein, F-box family protein, ankyrin repeat domain protein, and putative ABC transporter, respectively, were identified in genetic regions of the four QTL. These findings provide valuable QTL and breeding available KASP markers, facilitating the improvement of leaf rust resistance in wheat through marker-assisted breeding.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Status
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

Leaf rust is a highly destructive disease that poses a significant threat to both the yield and quality of wheat. Identification of genetic loci can aid in enhancing leaf rust resistance in wheat breeding. In the present study, 262 recombinant inbred lines derived from a cross between Zhongmai 578 and Jimai 22 were used to map leaf rust resistance loci using the Wheat 50K single-nucleotide polymorphism (SNP) array across four environments. Four quantitative trait loci (QTL) on chromosomes 2B (2), 5B, and 7B were identified through composite interval mapping, designated QLr.caas-2B.1, QLr.caas-2B.2, QLr.caas-5B, and QLr.caas-7B, respectively, explaining 3.7%-19.6% of the phenotypic variances. The resistance alleles at QLr.caas-2B.1, QLr.caas-5B, and QLr.caas-7B originated from Zhongmai 578, while that at QLr.caas-2B.2 came from Jimai 22. Both QLr.caas-2B.2 and QLr.caas-5B overlapped with loci previously reported, whereas QLr.caas-2B.1 and QLr.caas-7B are likely to be new loci. Two kompetitive allele-specific PCR (KASP) markers, KASP-QLr.caas-2B.2 and KASP-QLr.caas-5B, were proven to be significantly associated with leaf rust resistance in a diverse panel of 119 wheat varieties mainly from China. Four candidate genes encoding a lectin-receptor kinase protein, F-box family protein, ankyrin repeat domain protein, and putative ABC transporter, respectively, were identified in genetic regions of the four QTL. These findings provide valuable QTL and breeding available KASP markers, facilitating the improvement of leaf rust resistance in wheat through marker-assisted breeding.

Text in English

National Natural Science Foundation of China National Key Research and Development Program Chinese Academy of Agricultural Sciences (CAAS) China Association for Science and Technology (CAST) Nanfan Special Project

Click on an image to view it in the image viewer

Local cover image
Share

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org