Knowledge Center Catalog

Local cover image
Local cover image

Strong rhizosphere priming effects on N dynamics in soils with higher soil N supply capacity : the ‘Matthew effect’ in plant-soil systems

By: Contributor(s): Material type: ArticleLanguage: English Publication details: Netherlands : Elsevier, 2023.ISSN:
  • 0038-0717
  • 1879-3428 (Online)
Subject(s): In: Soil Biology and Biochemistry Netherlands : Elsevier, 2023. v. 178, art. 108949Summary: Appropriate N management can improve soil fertility and favour crop growth and production. Plant activities (e.g. N uptake and root exudates) also have feedback effects on soil N transformations and influence soil N supply and retention capacity. However, the inherent mechanisms between the feedback effect intensities and soil fertilizer are not fully elucidated. Thus, we carried out 15N tracing studies with arable soils at various long-term N fertilizer applications, including unfertilized control, synthetic N fertilizer, biochar, pig manure with and without synthetic N fertilizer, crop residues with and without synthetic N fertilizer. Soil gross N transformation rates, maize N uptake rates, and rhizosphere priming effects (RPE) on soil gross N transformations were quantified to explore mechanisms of soil N dynamics. Results showed that long-term N fertilizer applications significantly stimulated soil mineral N production rates, i.e. gross rates of N mineralization (M) and autotrophic nitrification (ONH4), and further enhanced maize N uptake and yield. Negative RPE on M were observed following long-term N fertilizer applications, ranging from −6.71 to −17.44 mg N kg−1 d−1. Furthermore, the strongest negative RPE on M were found for the combinations of chemical and organic N fertilizers. RPE on ONH4 (ranging from −3.10 to −31.91 mg N kg−1 d−1) also showed a similar trend to RPE on M in different treatments. Microbial N immobilization rates (ITN) and dissimilatory NO3− reduction to NH4+ (DNO3) were stimulated by the presence of maize, showing an obvious positive RPE on ITN and DNO3. Therefore, N retention capacity in the rhizosphere was enhanced via a strong negative RPE on ONH4, and a positive RPE on ITN and DNO3 in presence of maize following long-term N fertilizer applications. The stronger capacity of soil N supply in response to appropriate N management leads to higher maize activities and stronger feedbacks between plant and soil N transformation to improve N retention in rhizosphere, suggesting that the “Matthew effect” also applies to nutrient dynamics in the rhizosphere. Our results show that the combined applications of chemical and organic N fertilizers are the best way to enhance yield, NUE and N retention, and reduce the risks of soil N losses in arable soils.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Status
Article CIMMYT Knowledge Center: John Woolston Library Reprints Collection Available
Total holds: 0

Peer review

Appropriate N management can improve soil fertility and favour crop growth and production. Plant activities (e.g. N uptake and root exudates) also have feedback effects on soil N transformations and influence soil N supply and retention capacity. However, the inherent mechanisms between the feedback effect intensities and soil fertilizer are not fully elucidated. Thus, we carried out 15N tracing studies with arable soils at various long-term N fertilizer applications, including unfertilized control, synthetic N fertilizer, biochar, pig manure with and without synthetic N fertilizer, crop residues with and without synthetic N fertilizer. Soil gross N transformation rates, maize N uptake rates, and rhizosphere priming effects (RPE) on soil gross N transformations were quantified to explore mechanisms of soil N dynamics. Results showed that long-term N fertilizer applications significantly stimulated soil mineral N production rates, i.e. gross rates of N mineralization (M) and autotrophic nitrification (ONH4), and further enhanced maize N uptake and yield. Negative RPE on M were observed following long-term N fertilizer applications, ranging from −6.71 to −17.44 mg N kg−1 d−1. Furthermore, the strongest negative RPE on M were found for the combinations of chemical and organic N fertilizers. RPE on ONH4 (ranging from −3.10 to −31.91 mg N kg−1 d−1) also showed a similar trend to RPE on M in different treatments. Microbial N immobilization rates (ITN) and dissimilatory NO3− reduction to NH4+ (DNO3) were stimulated by the presence of maize, showing an obvious positive RPE on ITN and DNO3. Therefore, N retention capacity in the rhizosphere was enhanced via a strong negative RPE on ONH4, and a positive RPE on ITN and DNO3 in presence of maize following long-term N fertilizer applications. The stronger capacity of soil N supply in response to appropriate N management leads to higher maize activities and stronger feedbacks between plant and soil N transformation to improve N retention in rhizosphere, suggesting that the “Matthew effect” also applies to nutrient dynamics in the rhizosphere. Our results show that the combined applications of chemical and organic N fertilizers are the best way to enhance yield, NUE and N retention, and reduce the risks of soil N losses in arable soils.

Text in English

Click on an image to view it in the image viewer

Local cover image
Share

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org