Knowledge Center Catalog

Local cover image
Local cover image

Arabinoxylan profiles in Chinese winter wheat : Novel QTL and molecular marker

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Elsevier Ltd., 2024. United States of America :ISSN:
  • 0733-5210
  • 1095-9963 (Online)
Subject(s): In: Journal of Cereal Science v. 120, art. 104021.Summary: Arabinoxylan (AX) is a significant component of dietary fiber (DF) present in both whole meal and refined flour of wheat. Identifying genetic loci associated with AX content and developing molecular markers can facilitate the breeding of wheat cultivars with increased AX levels through marker-assisted selection (MAS). In our study, we analyzed the AX profiles of 262 recombinant inbred lines (RIL) derived from Zhongmai 578/Jimai 22, along with a natural population consisting of 161 representative wheat varieties in China. Our investigation revealed that Taishan 1 and Shan 715 exhibit WE-AX content comparable to or even superior to Yumai 34, a current benchmark cultivar for high WE-AX content. Additionally, we discovered a novel quantitative trait locus (QTL) in the RIL population, explaining 6.9–19.6% of the phenotypic variance of water-extractable AX (WE-AX) and 7.3–10.2% of the phenotypic variance of total AX (TOT-AX). Notably, a high-throughput competitive allele-specific PCR (KASP) marker was developed and validated in the natural population, expanding our understanding of germplasm with high AX content and providing molecular markers that can be utilized in marker-assisted selection for high AX wheat.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Arabinoxylan (AX) is a significant component of dietary fiber (DF) present in both whole meal and refined flour of wheat. Identifying genetic loci associated with AX content and developing molecular markers can facilitate the breeding of wheat cultivars with increased AX levels through marker-assisted selection (MAS). In our study, we analyzed the AX profiles of 262 recombinant inbred lines (RIL) derived from Zhongmai 578/Jimai 22, along with a natural population consisting of 161 representative wheat varieties in China. Our investigation revealed that Taishan 1 and Shan 715 exhibit WE-AX content comparable to or even superior to Yumai 34, a current benchmark cultivar for high WE-AX content. Additionally, we discovered a novel quantitative trait locus (QTL) in the RIL population, explaining 6.9–19.6% of the phenotypic variance of water-extractable AX (WE-AX) and 7.3–10.2% of the phenotypic variance of total AX (TOT-AX). Notably, a high-throughput competitive allele-specific PCR (KASP) marker was developed and validated in the natural population, expanding our understanding of germplasm with high AX content and providing molecular markers that can be utilized in marker-assisted selection for high AX wheat.

Text in English

Wenfei Tian : Not in IRS staff list but CIMMYT Affiliation

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org