Knowledge Center Catalog

Local cover image
Local cover image

Maize insensitivity to culture filtrates from Exserohilum turcicum is related to quantitative resistance

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Berlin (Germany) : Wiley, 2024.ISSN:
  • 0931-1785
  • 1439-0434 (Online)
Subject(s): Online resources: In: Journal of Phytopathology v. 172, no. 4, e13350Summary: Turcicum leaf blight (TLB) of maize is caused by Exserohilum turcicum. The TLB resistance is mainly associated with qualitative race-specific resistance that is linked to several Ht genes namely Ht1, Ht2, Ht3, HtM, HtN, HtNB and HtP. However, quantitative TLB resistance also occurs, but its mechanisms are poorly understood. In this study, tolerance or insensitivity to chlorosis and necrosis of E. turcicum culture filtrate was associated with quantitative TLB resistance. A novel detached maize seedling assay was developed for E. turcicum culture filtrate using methanol-treated modified Fries medium. Screening of E. turcicum isolates of races 2, 3, 23, 3 N, 23 N and 123 N against 61 maize inbred lines with diverse levels of resistance to TLB was conducted in the greenhouse by fungal inoculation and the detached seedling culture filtrate assay. Using an isolate of race 123 N, which can overcome all the qualitative resistance genes, a simple linear regression model (R-2 = 0.68, p = .90) for the 61 inbred lines was established between disease severity from foliar inoculations and culture filtrate symptom rating of the detached seedling assay. Two maize lines CML474 and CML483 had relatively high culture filtrate symptom ratings but very low disease severity with foliar inoculation indicating that these sources of quantitative TLB resistance may be unrelated to tolerance to E. turcicum culture filtrates, whose effect on seedlings could be due to the toxin known as HT-toxin or monocerin.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Article CIMMYT Knowledge Center: John Woolston Library CIMMYT Staff Publications Collection Available
Total holds: 0

Peer review

Open Access

Turcicum leaf blight (TLB) of maize is caused by Exserohilum turcicum. The TLB resistance is mainly associated with qualitative race-specific resistance that is linked to several Ht genes namely Ht1, Ht2, Ht3, HtM, HtN, HtNB and HtP. However, quantitative TLB resistance also occurs, but its mechanisms are poorly understood. In this study, tolerance or insensitivity to chlorosis and necrosis of E. turcicum culture filtrate was associated with quantitative TLB resistance. A novel detached maize seedling assay was developed for E. turcicum culture filtrate using methanol-treated modified Fries medium. Screening of E. turcicum isolates of races 2, 3, 23, 3 N, 23 N and 123 N against 61 maize inbred lines with diverse levels of resistance to TLB was conducted in the greenhouse by fungal inoculation and the detached seedling culture filtrate assay. Using an isolate of race 123 N, which can overcome all the qualitative resistance genes, a simple linear regression model (R-2 = 0.68, p = .90) for the 61 inbred lines was established between disease severity from foliar inoculations and culture filtrate symptom rating of the detached seedling assay. Two maize lines CML474 and CML483 had relatively high culture filtrate symptom ratings but very low disease severity with foliar inoculation indicating that these sources of quantitative TLB resistance may be unrelated to tolerance to E. turcicum culture filtrates, whose effect on seedlings could be due to the toxin known as HT-toxin or monocerin.

Text in English

Click on an image to view it in the image viewer

Local cover image

International Maize and Wheat Improvement Center (CIMMYT) © Copyright 2021.
Carretera México-Veracruz. Km. 45, El Batán, Texcoco, México, C.P. 56237.
If you have any question, please contact us at
CIMMYT-Knowledge-Center@cgiar.org